
MATLAB® Compiler™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Compiler™ User’s Guide

© COPYRIGHT 1995–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)
March 2010 Online only Revised for Version 4.13 (Release 2010a)
September 2010 Online only Revised for Version 4.14 (Release 2010b)
April 2011 Online only Revised for Version 4.15 (Release 2011a)
September 2011 Online only Revised for Version 4.16 (Release 2011b)
March 2012 Online only Revised for Version 4.17 (Release 2012a)
September 2012 Online only Revised for Version 4.18 (Release 2012b)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
What is MATLAB Compiler? . 1-3
How Do I Use This Product? . 1-5
How Does This Product Work? . 1-5
Limitations and Restrictions . 1-6

MATLAB Compiler Prerequisites 1-8
Your Role in the Application Deployment Process 1-8
What You Need to Know . 1-10
Products, Compilers, and IDE Installation 1-10
Deployment Target Architectures and Compatibility 1-11
Dependency and Non-Compilable Code Considerations . . . 1-11
For More Information . 1-12

The Magic Square Example . 1-13
About This Example . 1-13

Create a Standalone Application From MATLAB
Code . 1-15
magicsquare Testing . 1-16
Creating a Standalone Application 1-17
Packaging (Optional) . 1-21
Running a Standalone or Console Application 1-22

Create a Shared Library from MATLAB Code 1-25
magicsquare Testing . 1-26
Creating a Shared Library . 1-27

Integrate a Shared LibraryWith a C/C++ Application . . 1-32

v

Call the C or C++ Application . 1-33

Distribute MATLAB Code to End Users 1-35
Gathering Files Necessary for Deployment 1-36
Distribute to End Users . 1-36
Distributing MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 1-36

For More Information . 1-39

Installation and Configuration

2
Before You Install MATLAB Compiler 2-2
Install MATLAB . 2-2
Install an ANSI C or C++ Compiler 2-2

Installing MATLAB Compiler . 2-5
Installing Your Product . 2-5
Compiler Options . 2-5

Configuring the MCR Installer For Invocation From a
Network Location . 2-6

Configuring Your Options File with mbuild 2-7
What Is mbuild? . 2-7
When Not to Use mbuild -setup . 2-7
Running mbuild . 2-8
Locating and Customizing the Options File 2-10

Solving Installation Problems . 2-13

vi Contents

MATLAB Code Deployment

3
MATLAB Application Deployment Products 3-2

Application Deployment Products and the Deployment
Tool . 3-4
What Is the Difference Between the Deployment Tool and
the mcc Command Line? . 3-4

How Does MATLAB Compiler Software Build My
Application? . 3-4

Dependency Analysis Function (depfun) 3-7
MEX-Files, DLLs, or Shared Libraries 3-8
Component Technology File (CTF Archive) 3-8

Write Deployable MATLAB Code . 3-12
Compiled Applications Do Not Process MATLAB Files at
Runtime . 3-12

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 3-13

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 3-14

Gradually Refactor Applications That Depend on
Noncompilable Functions . 3-14

Do Not Create or Use Nonconstant Static State
Variables . 3-15

Get Proper Licenses for Toolbox Functionality You Want to
Deploy . 3-15

How the Deployment Products Process MATLAB
Function Signatures . 3-17
MATLAB Function Signature . 3-17
MATLAB Programming Basics . 3-17

Load MATLAB Libraries using loadlibrary 3-19
Restrictions on Using MATLAB Function loadlibrary with
MATLAB Compiler . 3-20

Use MATLAB Data Files (MAT Files) in Compiled
Applications . 3-21

vii

Explicitly Including MAT files Using the %#function
Pragma . 3-21

Load and Save Functions . 3-21
MATLAB Objects . 3-24

C and C++ Standalone Executable and Shared
Library Creation

4
Supported Compilation Targets . 4-2
When to Create a Standalone Application 4-2
What’s the Difference Between a Windows Standalone
Application and a Console/Standalone Application? . . . 4-2

When to Create a Shared Library . 4-3

Standalone Executable and Shared Library Creation
From MATLAB Code . 4-5
Build Standalone Executables and Shared Libraries Using
the Deployment Tool . 4-5

Build Standalone Executables and Shared Libraries Using
the Command Line (mcc) . 4-5

Watch a Video . 4-7

Input and Output Files . 4-8
Standalone Executable . 4-8
C Shared Library . 4-9
C++ Shared Library . 4-11
Macintosh 64 (Maci64) . 4-13

Dependency Analysis Function (depfun) and User
Interaction with the Compilation Path 4-14
addpath and rmpath in MATLAB . 4-14
Passing -I <directory> on the Command Line 4-14
Passing -N and -p <directory> on the Command Line 4-14

viii Contents

Deployment Process

5
Overview . 5-2
Watch a Video . 5-2

Deploying to Developers . 5-3
Procedure . 5-3
What Software Does a Developer Need? 5-4
Ensuring Memory for Deployed Applications 5-8

Deploying to End Users . 5-9
Steps by the Developer to Deploy to End Users 5-9
What Software Does the End User Need? 5-12
Using Relative Paths with Project Files 5-15
Porting Generated Code to a Different Platform 5-15
Extracting a CTF Archive Without Executing the
Component . 5-15

Ensuring Memory for Deployed Applications 5-16

Working with the MCR . 5-17
About the MATLAB Compiler Runtime (MCR) 5-17
The MCR Installer . 5-18
Installing the MCR Non-Interactively (Silent Mode) 5-26
Removing (Uninstalling) the MCR . 5-28
Retrieving MCR Attributes . 5-30
Improving Data Access Using the MCR User Data
Interface . 5-32

Displaying MCR Initialization Start-Up and Completion
Messages For Users . 5-35

Deploy Applications Created Using Parallel Computing
Toolbox . 5-37
Compile and Deploy a Standalone Application with the
Parallel Computing Toolbox . 5-37

Compile and Deploy a Shared Library with the Parallel
Computing Toolbox . 5-43

Deploying a Standalone Application on a Network
Drive (Windows Only) . 5-44

ix

MATLAB Compiler Deployment Messages 5-46

Using MATLAB Compiler Generated DLLs in Windows
Services . 5-47

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding . 5-48
What Is MATLAB Memory Shielding and When Should You
Use It? . 5-48

Requirements for Using MATLAB Memory Shielding 5-49
Invoking MATLAB Memory Shielding for Your Deployed
Application . 5-49

Compiler Commands

6
Command Overview . 6-2
Compiler Options . 6-2
Combining Options . 6-2
Conflicting Options on the Command Line 6-3
Using File Extensions . 6-3
Interfacing MATLAB Code to C/C++ Code 6-4

Simplify Compilation Using Macros 6-5
Macro Options . 6-5
Working With Macro Options . 6-5

Invoke MATLAB Build Options . 6-8
Specifying Full Path Names to Build MATLAB Code 6-8
Using Bundle Files to Build MATLAB Code 6-9
What Are Wrapper Files? . 6-10
Wrapper Files . 6-11

MCR Component Cache and CTF Archive
Embedding . 6-14
Overriding Default Behavior . 6-15
For More Information . 6-16

x Contents

Explicitly Including a File for Compilation Using the
%#function Pragma . 6-17
Using feval . 6-17
Using %#function . 6-17

Use the mxArray API to Work with MATLAB Types . . . 6-19

Script Files . 6-20
Converting Script MATLAB Files to Function MATLAB
Files . 6-20

Including Script Files in Deployed Applications 6-21

Compiler Tips . 6-23
Calling a Function from the Command Line 6-23
Using winopen in a Deployed Application 6-24
Using MAT-Files in Deployed Applications 6-24
Compiling a GUI That Contains an ActiveX Control 6-24
Debugging MATLAB Compiler Generated Executables . . . 6-25
Deploying Applications That Call the Java Native
Libraries . 6-25

Locating .fig Files in Deployed Applications 6-25
Terminating Figures by Force In a Console Application . . 6-25
Passing Arguments to and from a Standalone
Application . 6-26

Using Graphical Applications in Shared Library Targets . . 6-28
Using the VER Function in a Compiled MATLAB
Application . 6-28

Standalone Applications

7
Introduction . 7-2

Deploying Standalone Applications 7-3
Compiling the Application . 7-3
Testing the Application . 7-3
Deploying the Application . 7-4
Running the Application . 7-6

xi

Working with Standalone Applications and
Arguments . 7-8
Overview . 7-8
Passing File Names, Numbers or Letters, Matrices, and
MATLAB Variables . 7-8

Running Standalone Applications that Use Arguments . . . 7-9

Combining Your MATLAB and C/C++ Code 7-12

Libraries

8
Introduction . 8-2

Addressing mwArrays Above the 2 GB Limit 8-3

Integrate C Shared Libraries . 8-4
C Shared Library Wrapper . 8-4
C Shared Library Example . 8-4
Calling a Shared Library . 8-13
Using C Shared Libraries On a Mac OS X System 8-17

Integrate C++ Shared Libraries . 8-18
C++ Shared Library Wrapper . 8-18
C++ Shared Library Example . 8-18

Call MATLAB Compiler API Functions (mcl*) from
C/C++ Code . 8-25
Functions in the Shared Library . 8-25
Type of Application . 8-25
Structure of Programs That Call Shared Libraries 8-27
Library Initialization and Termination Functions 8-28
Print and Error Handling Functions 8-29
Functions Generated from MATLAB Files 8-31
Retrieving MCR State Information While Using Shared
Libraries . 8-36

About Memory Management and Cleanup 8-37

xii Contents

Overview . 8-37
Passing mxArrays to Shared Libraries 8-37

Troubleshooting

9
Introduction . 9-2

Common Issues . 9-4

Failure Points and Possible Solutions 9-5
How to Use this Section . 9-5
Does the Failure Occur During Compilation? 9-5
Does the Failure Occur When Testing Your Application? . . 9-10
Does the Failure Occur When Deploying the Application to
End Users? . 9-13

Troubleshooting mbuild . 9-15

MATLAB Compiler . 9-17

Deployed Applications . 9-21

Limitations and Restrictions

10
MATLAB Compiler Limitations . 10-2
Compiling MATLAB and Toolboxes 10-2
Fixing Callback Problems: Missing Functions 10-3
Finding Missing Functions in a MATLAB File 10-5
Suppressing Warnings on the UNIX System 10-5
Cannot Use Graphics with the -nojvm Option 10-6
Cannot Create the Output File . 10-6
No MATLAB File Help for Compiled Functions 10-6
No MCR Versioning on Mac OS X . 10-7

xiii

Older Neural Networks Not Deployable with MATLAB
Compiler . 10-7

Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode . 10-7

Compiling a Function with WHICH Does Not Search
Current Working Directory . 10-8

Restrictions on Using C++ SETDATA to Dynamically
Resize an MWArray . 10-8

Licensing Terms and Restrictions on Compiled
Applications . 10-9

MATLAB Functions That Cannot Be Compiled 10-10

Reference Information

11
MCR Path Settings for Development and Testing 11-2
Overview . 11-2
Path for Java Development on All Platforms 11-2
Path Modifications Required for Accessibility 11-2
Windows Settings for Development and Testing 11-3
Linux Settings for Development and Testing 11-3
Mac Settings for Development and Testing 11-3

MCR Path Settings for Run-time Deployment 11-5
General Path Guidelines . 11-5
Path for Java Applications on All Platforms 11-5
Windows Path for Run-Time Deployment 11-5
Linux Paths for Run-Time Deployment 11-6
Mac Paths for Run-Time Deployment 11-7

MATLAB Compiler Licensing . 11-8
Using MATLAB Compiler Licenses for Development 11-8

Application Deployment Terms . 11-10

xiv Contents

Functions — Alphabetical List

12

Function Reference

13
Pragmas . 13-2

Command-Line Tools . 13-3

API Functions . 13-4

MATLAB Compiler Quick Reference

A
Common Uses of MATLAB Compiler A-2
Create a Standalone Application . A-2
Create a Library . A-2

mcc Command Arguments Listed Alphabetically A-4

mcc Command Line Arguments Grouped by Task A-8

Using MATLAB Compiler on Mac or Linux

B
Overview . B-2

Installing MATLAB Compiler on Mac or Linux B-3
Installing MATLAB Compiler . B-3

xv

Selecting Your gcc Compiler . B-3
Custom Configuring Your Options File B-3
Install Apple Xcode from DVD on Maci64 B-3

Writing Applications for Mac or Linux B-4
Objective-C/C++ Applications for Apple’s Cocoa API B-4
Where’s the Example Code? . B-4
Preparing Your Apple Xcode Development Environment . . B-4
Build and Run the Sierpinski Application B-5
Running the Sierpinski Application B-7

Building Your Application on Mac or Linux B-10
Compiling Your Application with the Deployment Tool . . . B-10
Compiling Your Application with the Command Line B-10

Testing Your Application on Mac or Linux B-11

Running Your Application on Mac or Linux B-12
Installing the MCR on Mac or Linux B-12
Set MCR Paths on Mac or Linux with Scripts B-12
Running Applications on Linux Systems with No Display
Console . B-14

Run Your 64-Bit Mac Application B-15
Overview . B-15
Installing the Macintosh Application Launcher Preference
Pane . B-15

Configuring the Installation Area . B-15
Launching the Application . B-18

Error and Warning Messages

C
About Error and Warning Messages C-2

Compile-Time Errors . C-3

xvi Contents

Warning Messages . C-7

depfun Errors . C-10
About depfun Errors . C-10
MCR/Dispatcher Errors . C-10
XML Parser Errors . C-10
depfun-Produced Errors . C-11

C++ Utility Library Reference

D
Data Conversion Restrictions for the C++ MWArray
API . D-2

Primitive Types . D-3

Utility Classes . D-4

mwString Class . D-5
About mwString . D-5
Constructors . D-5
Methods . D-5
Operators . D-5

mwException Class . D-21
About mwException . D-21
Constructors . D-21
Methods . D-21
Operators . D-21

mwArray Class . D-30
About mwArray . D-30
Constructors . D-30
Methods . D-31
Operators . D-32
Static Methods . D-33

xvii

Index

xviii Contents

1

Getting Started

• “Product Description” on page 1-2

• “Product Overview” on page 1-3

• “MATLAB® Compiler™ Prerequisites” on page 1-8

• “The Magic Square Example” on page 1-13

• “Create a Standalone Application From MATLAB Code” on page 1-15

• “Create a Shared Library from MATLAB Code” on page 1-25

• “Integrate a Shared Library With a C/C++ Application” on page 1-32

• “Call the C or C++ Application” on page 1-33

• “Distribute MATLAB Code to End Users” on page 1-35

• “For More Information” on page 1-39

1 Getting Started

Product Description
Build standalone executables and software components from
MATLAB® code

MATLAB Compiler™ lets you share your MATLAB application as an
executable or a shared library. Executables and libraries created with
MATLAB Compiler use a runtime engine called the MATLAB Compiler
Runtime (MCR). The MCR is provided with MATLAB Compiler for
distribution with your application and can be deployed royalty-free.

Key Features

• Packages MATLAB applications as executables and shared libraries

• Lets you distribute standalone executables and software components
royalty-free

• Lets you incorporate MATLAB based algorithms into applications
developed using other languages and technologies

• Encrypts MATLAB code so that it cannot be viewed or modified

1-2

Product Overview

Product Overview

In this section...

“What is MATLAB® Compiler™?” on page 1-3

“How Do I Use This Product?” on page 1-5

“How Does This Product Work?” on page 1-5

“Limitations and Restrictions” on page 1-6

What is MATLAB Compiler?
MATLAB Compiler compiles a MATLAB application into a standalone
application or shared library. The act of compiling this code is sometimes
referred to as building.

Building with MATLAB Compiler enables you to run your MATLAB
application outside the MATLAB environment. It reduces application
development time by eliminating the need to translate your code into a
different language.

If you are building a standalone application, MATLAB Compiler produces
an executable for your end users. If you integrate into C or C++, MATLAB
Compiler provides an interface to use your code as a shared library. If you
integrate into other development languages, MATLAB builder products
(available separately) let you package your MATLAB applications as software
components. You are able to use Java classes, .NET components, or Microsoft®

Excel® add-ins.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

When To Use MATLAB Compiler
Use MATLAB Compiler to:

• Deploy C or C++ code that interfaces with MATLAB

1-3

1 Getting Started

• Package MATLAB® applications as executables and shared libraries

• Distribute standalone applications and software components, royalty-free

• Incorporate MATLAB-based algorithms into applications developed using
other languages and technologies

• Encrypt your MATLAB code, so that it cannot be viewed or modified

When Not To Use MATLAB Compiler
Do not use MATLAB Compiler and builder products for applications shown
on the following table. Instead, use the recommended MathWorks product
indicated.

To... Use...

• Generate readable, efficient, and
embeddable C code from MATLAB
code

• Generate MEX functions from
MATLAB code for rapid prototyping
and verification of generated C code
within MATLAB

• Integrate MATLAB code into
Simulink®

• Speed up fixed-point MATLAB code

• Generate hardware description
language (HDL) from MATLAB code

MATLAB Coder™
documentation

• Integrate custom C code into MATLAB
with MEX files

• Call MATLAB from C and Fortran
programs

MATLAB External Interfaces
documentation

Deploy Java components into enterprise
computing environments and to
MATLAB users

MATLAB Builder™ JA
documentation

1-4

Product Overview

To... Use...

Deploy .NET and COM components into
enterprise computing environments and
to MATLAB users

MATLAB Builder NE
documentation

Deploy Excel add-ins to enterprise
computing environments and to
MATLAB users

MATLAB Builder EX
documentation

How Do I Use This Product?
You use MATLAB Compiler by running the Deployment Tool GUI
(deploytool) from MATLAB or by executing the mcc command.

How Does This Product Work?
MATLAB Compiler readies your application for deployment to enterprise
computing environments using a combination of generated archives, libraries,
and wrapper files.

Standalone Applications and Shared Libraries
An application or library generated by MATLAB Compiler consists of a
platform-specific binary file and an archive file containing the encrypted
MATLAB application and data.

A standalone binary file (also called a standalone executable) consists of
a main function.

By contrast, a shared library binary consists of multiple functions for
exporting.

Wrapper Files
wrapper

MATLAB Compiler generates files. These files provide an interface to your
MATLAB code when compiled. The wrapper files and MATLAB code are
compiled into platform-specific binary files. Wrapper files differ depending on
the execution environment.

1-5

1 Getting Started

MATLAB Compiler-generated Applications and the MATLAB
Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is an engine for execution of compiled
MATLAB code.

When you package and distribute applications and libraries that MATLAB
Compiler generates, you include the MCR, so your MATLAB code can be run
on systems without a licensed version of MATLAB. You set the system paths
on the target machine so your application finds the MCR and supporting files.

You have the option to include the MCR with every package generated by the
Deployment Tool (deploytool). Include the MCR by clicking Add MCR on
the Package tab or download it from the Web. Install it on target machines
by running the self-extracting package executable. For more information on
the MCR and the MCR Installer, see “Distributing MATLAB Code Using the
MATLAB Compiler Runtime (MCR)” on page 1-36

See the MATLAB Compiler product page for more information about
downloading the MCR.

Limitations and Restrictions
MATLAB Compiler 32-Bit Applications Compatible with Windows 64

Architecture Compatibility
Just as you can run 32-bit MATLAB on a 64-bit system, you can create 32-bit
executables (EXE or DLL) on a 64-bit system.

Requirements to compile and deploy such executables match the requirements
to create a 32-bit application on a 32-bit machine (for example, you need an
MCR from a 32-bit version of MATLAB to run a 32-bit application).

For a listing of requirements, see
http://www.mathworks.com/support/compilers/current_release/ .

Cross-Platform Considerations
If you are considering porting components created with MATLAB®

Compiler™, note the following:

1-6

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/support/compilers/current_release/

Product Overview

• Only Java components can cross platforms. Exceptions are specified here.

• Deployment across a 32-bit/64-bit boundary does not work for anything
except Java™ components. In other words, deploying from 32-bit Windows®

XP to 64-bit Windows XP fails, as would deployment from 64-bit Linux®

to 32-bit Linux. However, deployment from one operating system type
to another (Windows XP to Windows Vista™, for example) works. The
machines must be the same architecture (32-bit or 64-bit) and meet the
general system requirements of MATLAB. For example, deployment from
32-bit Windows XP to 32-bit Windows Vista works.

Note You can cross 32 to 64 bit boundaries if your MCR version is
compatible with the MATLAB version the component was created with.

Limitations on Deployability
MATLAB code can only be deployed if the toolbox with which it was created
is compatible with MATLAB Compiler. MATLAB code generated by certain
toolboxes cannot be deployed, usually due to legal, proprietary restrictions.

To determine if your toolbox is compatible, check your toolbox documentation
as well as the MATLAB Compiler list of “MATLAB Functions That Cannot
Be Compiled” on page 10-10

For a complete list of what makes MATLAB code deployable or non-deployable,
see “MATLAB® Compiler™ Limitations” on page 10-2 and “Write Deployable
MATLAB Code” on page 3-12 in this User’s Guide.

1-7

1 Getting Started

MATLAB Compiler Prerequisites

In this section...

“Your Role in the Application Deployment Process” on page 1-8

“What You Need to Know” on page 1-10

“Products, Compilers, and IDE Installation” on page 1-10

“Deployment Target Architectures and Compatibility” on page 1-11

“Dependency and Non-Compilable Code Considerations” on page 1-11

“For More Information” on page 1-12

Your Role in the Application Deployment Process
Depending on the size of your organization, you play one role, or many, in the
process of successfully deploying a standalone application or shared library.

For example, you analyze user requirements and satisfy them by writing a
program in MATLAB code. You can also implement the infrastructure to
deploy an application to users in computing environments different from your
own. In smaller organizations, you find one person responsible for performing
tasks associated with multiple roles. The table Application Deployment Roles,
Tasks, and References on page 1-9 describes some of the different MATLAB
Compiler roles or jobs. It also describes which tasks you would most likely
perform when running “The Magic Square Example” on page 1-13 in this
chapter.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

1-8

MATLAB® Compiler™ Prerequisites

Application Deployment Roles, Tasks, and References

Role Knowledge
Base

Responsibilities Task To Achieve
Goal

MATLAB
programmer

• MATLAB
expert

• No IT
experience

• No access to
IT systems

• Develops
models;
implements
in MATLAB

• Serves as tool
builder

• Uses tools
to create a
component
that is used by
the C or C++
programmer

“Create a
Standalone
Application From
MATLAB Code”
on page 1-15

C/C++
developer

• Little to no
MATLAB
experience

• Moderate IT
experience

• C/C++ expert

• Minimal
access to IT
systems

• Integrates
deployed
component
with the rest
of the C or C++
application

• Integrates
deployed
MATLAB
Figures with
the rest of
the C or C++
application

“Distribute
MATLAB Code
to End Users” on
page 1-35

End user

• No MATLAB
experience

• Some
knowledge
of the data

• In Web
environments,
consumes
what the
front-end

Not Applicable

1-9

1 Getting Started

Application Deployment Roles, Tasks, and References (Continued)

Role Knowledge
Base

Responsibilities Task To Achieve
Goal

that is being
displayed, but
not how it was
created

developer
creates

• Integrates
MATLAB code
with other
third-party
applications,
such as Excel

What You Need to Know
To use the MATLAB Compiler product, specific requirements exist for each
user role.

Role Requirements

MATLAB
programmer

• A basic knowledge of MATLAB, and how to work with:

- MATLAB data types

- MATLAB structures

C/C++ developer

• Exposure to:

- Exposure to the C or C++ programming languages

- Procedural or object-oriented programming concepts

Products, Compilers, and IDE Installation
Install the following products to run the example described in this chapter:

• MATLAB

• MATLAB Compiler

1-10

MATLAB® Compiler™ Prerequisites

• A supported C or C++ compiler

For more information about product installation and requirements, see
“Installing MATLAB® Compiler™” on page 2-5.

Compiler Selection with mbuild -setup
The first time you use MATLAB Compiler, after starting MATLAB, run the
following command:

mbuild -setup

For more information about mbuild -setup, see “What Is mbuild?” on page
2-7.

Deployment Target Architectures and Compatibility
Before you deploy a component with MATLAB Compiler, consider if your
target machines are 32-bit or 64-bit.

Applications developed on one architecture must be compatible with the
architecture on the system where they are deployed.

Dependency and Non-Compilable Code
Considerations
Before you deploy your code, examine the code for dependencies on functions
that may not be compatible with MATLAB Compiler.

For more detailed information about dependency analysis (depfun) and
how MATLAB Compiler evaluates MATLAB code prior to compilation, see
“Write Deployable MATLAB Code” on page 3-12 in the MATLAB Compiler
documentation.

1-11

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

For More Information

If you want to... See...

Create a standalone application in
C or C++

• “Magic Square”

• “Standalone Executable and
Shared Library Creation From
MATLAB Code” on page 4-5

• “Build Standalone Executables
and Shared Libraries Using the
Deployment Tool ” on page 4-5

Create a shared library in C or C++ • “Magic Square”

• “Integrate C Shared Libraries” on
page 8-4

• “Integrate C++ Shared Libraries”
on page 8-18

Learn more about standalone
applications and shared libraries

“Supported Compilation Targets” on
page 4-2

Verify your MATLAB code is
deployable

“Write Deployable MATLAB Code”
on page 3-12

Distribute your standalone or
shared library to end user with the
MATLAB Compiler Runtime (MCR)

“Distributing MATLAB Code Using
the MATLAB Compiler Runtime
(MCR)” on page 1-36

1-12

The Magic Square Example

The Magic Square Example

About This Example
The example in this chapter shows you how to transform the MATLAB
function magic into a deployable standalone application or shared library
component.

The steps in this example vary, depending on if you want to deploy your
MATLAB code as a standalone or as a shared library. If you are unsure about
which target to select for your deployment, see “When to Create a Standalone
Application” on page 4-2 and “When to Create a Shared Library” on page 4-3

What Is a Magic Square?
A magic square is simply a square array of integers arranged so that their
sum is the same when added vertically, horizontally, or diagonally.

How Do I Access the Examples?
The examples for MATLAB Compiler are in
matlabroot\extern\examples\compiler. For matlabroot, substitute the
MATLAB root folder on your system. Type matlabroot to see this folder
name.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

Watch a Video
Watch a video about deploying applications using MATLAB Compiler.

1-13

1 Getting Started

For More Information

If you want to... See...

Write MATLAB code that can be
easily deployed

“Write Deployable MATLAB Code”
on page 3-12

See more examples of creating
standalones and shared libraries

“Standalone Executable and Shared
Library Creation From MATLAB
Code” on page 4-5

See more examples of how to
integrate your shared libraries into
larger scale enterprise C and C++
applications

“Integrate C Shared Libraries” on
page 8-4
“Integrate C++ Shared Libraries” on
page 8-18

Learn more about the MATLAB
Compiler Runtime and MCR
Installer

“The MCR Installer” on page 5-18

Installing MATLAB Compiler and
running mbuild

“Installing MATLAB® Compiler™”
on page 2-5

Deploying standalones and shared
libraries on Mac or Linux

Appendix B, “Using MATLAB®

Compiler™ on Mac or Linux”

1-14

Create a Standalone Application From MATLAB Code

Create a Standalone Application From MATLAB Code

In this section...

“magicsquare Testing” on page 1-26

“Creating a Standalone Application” on page 1-17

“Packaging (Optional)” on page 1-21

“Running a Standalone or Console Application” on page 1-22

The MATLAB programmer performs the following tasks.

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Serves as tool builder

• Uses tools to create a component that
is used by the C or C++ developer

Key Tasks for the MATLAB Programmer

Task Reference

Test the MATLAB code to ensure
that it is suitable for deployment.

“magicsquare Testing” on page 1-26

Create a standalone application by
running the Deployment Tool.

“Creating a Standalone Application”
on page 1-17

Optionally, run the Packaging
Tool to bundle your standalone
application with any additional files
you select, such as the MATLAB
Compiler Runtime (MCR).

“Packaging (Optional)” on page 1-21

1-15

1 Getting Started

Key Tasks for the MATLAB Programmer (Continued)

Task Reference

Run your standalone or console
application

“Running a Standalone or Console
Application” on page 1-22

Distribute your standalone or
console application using the
MATLAB Compiler Runtime (MCR)

“Distribute MATLAB Code to End
Users” on page 1-35

magicsquare Testing
In this example, you test a MATLAB file (magicsquare.m) containing the
predefined MATLAB function magic, in order to have a baseline to compare
to the results of the function when it is deployed as a standalone application
or shared library.

1 Using MATLAB, locate and open magicsquare.m (see “How Do I Access the
Examples?” on page 1-13). This file should appear similar to the following:

function m = magicsquare(n)
%MAGICSQUARE generates a magic square matrix of the size
% specified by the input parameter n.

% Copyright 2003-2012 The MathWorks, Inc.

if ischar(n)
n=str2num(n);

end
m = magic(n);

2 At the MATLAB command prompt, enter magicsquare(5), and view the
results. The output appears as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

1-16

Create a Standalone Application From MATLAB Code

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

“Write Deployable MATLAB Code”
on page 3-12

Creating a Standalone Application
You create a deployable standalone application by using the Deployment Tool
GUI to build a wrapper. This wrapper encloses the sample MATLAB code
referenced in “magicsquare Testing” on page 1-26.

Using MATLAB Compiler, you have the choice to compile your MATLAB
code to these targets:

MATLAB Compiler Supported Compilation Targets for Standalone
Applications

Compilation Target For information about when to
compile to this target....

Standalone Application “When to Create a Standalone
Application” on page 4-2

Console Application “When to Create a Standalone
Application” on page 4-2
“What’s the Difference Between a
Windows Standalone Application
and a Console/Standalone
Application?” on page 4-2

1-17

1 Getting Started

Use the following information when creating your standalone application
as you work through this example:

Project Name MagicExample

File to compile magicsquare.m

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the command prompt, and press Enter. The
Deployment Project dialog box opens.

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project, in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Type drop-down
menu.

1-18

Create a Standalone Application From MATLAB Code

Note Windows standalone targets differ from conventional standalone
targets. A Windows standalone application produces no output to the
MS-DOS window. Consider this difference when selecting between the
targets in accordance with your user requirements.

d Click OK.

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

4 On the Build tab:

• If you are building a standalone application, click Add main file to open
the Add Files dialog box..

Click Open to select the file or files containing your MATLAB code.

Note In this context, main file refers to the primary MATLAB file
you want to deploy. It does not refer to the main module in a C or C++
program.

• If you are building a shared library target, click Add files to open the
Add Files dialog box.

Click Open to select the file or files.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

1-19

1 Getting Started

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”. For more
information about the differences between standalones and Windows
standalone, see “What’s the Difference Between a Windows Standalone
Application and a Console/Standalone Application?” on page 4-2 in this
User’s Guide.

5 When you complete your changes, click the Build button (). When the
build finishes, click Close to dismiss the dialog box.

What Gets Built?
After you build your standalone application with the Deployment Tool, you
have the following in the src and distrib subdirectories of your project
directory:

These Subdirectories of the
Project Directory:

Contain these files:

src • ProjectName.exe — the
executable application.

• readme.txt containing important
information about how to use this
built component.

• LOG file listing functions that
were not compiled or included in
this build.

distrib • ProjectName.exe — the
executable application.

• readme.txt containing important
information about how to use this
built component.

1-20

Create a Standalone Application From MATLAB Code

Packaging (Optional)
Packaging is bundling the standalone application with additional files for end
users. Perform this step using the Package tab of deploytool. Alternately,
copy the contents of the distrib folder and the MCR Installer to a local
folder of your choice.

Packaging Wizard
On the Package tab, add the MATLAB Compiler Runtime (MCR). To do
so, click Add MCR. There are two packaging options from which to choose:
Embed the MCR in the Package or Add a batch file to invoke the MCR
over the network.

Note As of R2012a, you can now download the MCR over the Web as opposed
to packaging it. See the MATLAB Compiler product page for full details.

Embed the MCR in the Package. This option physically copies the MCR
Installer file into the package you create. Use this option when:

• You have a limited number of end users who deploy a small number of
applications at sporadic intervals.

• Your users have no intranet/network access.

• Resources such as disk space, performance, and processing time are not
significant concerns.

Note Distributing the MCR Installer with each application requires more
resources.

Add a Batch File to Invoke the MCR Over the Network. This option lets
you add a link to an MCR Installer residing on a local area network. Adding
such a link allows you to invoke the installer over the network, as opposed to
copying the installer physically into the deployable package. The builder sets
up a script to install the MCR from a specified network location, saving time
and resources. Use this option when:

1-21

http://www.mathworks.com/products/compiler/mcr

1 Getting Started

• You have a large number of end users who deploy applications frequently.

• Your users have intranet/network access.

• Resources such as disk space, performance, and processing time are
significant concerns for your organization when deploying applications. If
you choose this option, modify the location of the MCR Installer, if needed.
To do so, select the Preferences link in this dialog box, or change the
Compiler option in your MATLAB Preferences.

Caution Before selecting this option, consult with your network or
systems administrator. Your administrator may already have selected a
network location from which to run the MCR Installer.

1 Select either Embed the MCR in the Package or Add a batch file to
invoke the MCR over the network.

2 Add to the package any other files or folders you feel may be useful to end
users.

a Click Add file/directories.

b Select the file or folder you want to package.

c Click Open.

3 In the Deployment Tool, click the Packaging icon ().

4 Choose to package your deployment as either a Self-extracting
executable or as a ZIP file by selecting the appropriate option in the
Save as type drop-down box.

5 Click Save.

6 Verify that the contents of the distrib folder contains the files you
specified.

Running a Standalone or Console Application
Once you have created your standalone or console application, run it using
one of the following techniques, based on the target you selected.

1-22

Create a Standalone Application From MATLAB Code

Running a Standalone Application
To run a standalone application:

1 Locate the application (.exe file), in your distrib folder, where it was
built by MATLAB Compiler.

2 Run the application file. For example, to run the file from within MATLAB,
change your working folder to distrib and enter the following at the
MATLAB command line:

!MagicExample 5

A Magic Square with five dimensions is displayed in MATLAB:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Running a Console Application
To run a console application:

1 Locate the application (.exe file), in your distrib folder, where it was
built by MATLAB Compiler.

2 Run the application file from a console.

For example, open a Windows or Linux command window and change your
working folder to distrib.

3 Enter the following:

MagicExample 5

A Magic Square with five dimensions is displayed in the console:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3

1-23

1 Getting Started

11 18 25 2 9

1-24

Create a Shared Library from MATLAB Code

Create a Shared Library from MATLAB Code

In this section...

“magicsquare Testing” on page 1-26

“Creating a Shared Library” on page 1-27

The MATLAB programmer performs the following tasks.

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Serves as tool builder

• Uses tools to create a component that
is used by the C or C++ developer

Key Tasks for the MATLAB Programmer

Task Reference

Test the MATLAB code to ensure
that it is suitable for deployment.

“magicsquare Testing” on page 1-26

Create a shared library by running
the Deployment Tool.

“Create a Shared Library from
MATLAB Code” on page 1-25

Optionally, run the Packaging Tool
to bundle your shared library with
any additional files you select, such
as the MATLAB Compiler Runtime
(MCR).

“Packaging (Optional)” on page 1-21

Integrate your shared library with
existing C or C++ code.

“Integrate a Shared Library With a
C/C++ Application” on page 1-32

1-25

1 Getting Started

Key Tasks for the MATLAB Programmer (Continued)

Task Reference

Test your shared library by calling it
from a C or C++ application.

“Call the C or C++ Application” on
page 1-33

Distribute your shared library with
the MATLAB Compiler Runtime
(MCR).

“Distribute MATLAB Code to End
Users” on page 1-35

magicsquare Testing
In this example, you test a MATLAB file (magicsquare.m) containing the
predefined MATLAB function magic, in order to have a baseline to compare
to the results of the function when it is deployed as a standalone application
or shared library.

1 Using MATLAB, locate and open magicsquare.m (see “How Do I Access the
Examples?” on page 1-13). This file should appear similar to the following:

function m = magicsquare(n)
%MAGICSQUARE generates a magic square matrix of the size
% specified by the input parameter n.

% Copyright 2003-2012 The MathWorks, Inc.

if ischar(n)
n=str2num(n);

end
m = magic(n);

2 At the MATLAB command prompt, enter magicsquare(5), and view the
results. The output appears as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

1-26

Create a Shared Library from MATLAB Code

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

“Write Deployable MATLAB Code”
on page 3-12

Creating a Shared Library
You create a deployable shared library by using the Deployment Tool GUI to
build a wrapper. This wrapper encloses the sample MATLAB code referenced
in “magicsquare Testing” on page 1-26.

Using MATLAB Compiler, you have the choice to compile your MATLAB
code to these targets:

MATLAB Compiler Supported Compilation Targets

Compilation Target For information about when to
compile to this target....

C Shared Library “When to Create a Shared Library”
on page 4-3
“C Shared Libraries” on page 4-3

C++ Shared Library “When to Create a Shared Library”
on page 4-3
“C++ Shared Libraries” on page 4-4

Use the following information when creating your component as you work
through this example:

1-27

1 Getting Started

Project Name MagicExample

File to compile magicsquare.m

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the command prompt, and press Enter. The
Deployment Project dialog box opens.

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project, in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Type drop-down
menu.

Note Windows standalone targets differ from conventional standalone
targets. A Windows standalone application produces no output to the
MS-DOS window. Consider this difference when selecting between the
targets in accordance with your user requirements.

1-28

Create a Shared Library from MATLAB Code

d Click OK.

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

4 On the Build tab:

• If you are building a standalone application, click Add main file to open
the Add Files dialog box..

Click Open to select the file or files containing your MATLAB code.

Note In this context, main file refers to the primary MATLAB file
you want to deploy. It does not refer to the main module in a C or C++
program.

• If you are building a shared library target, click Add files to open the
Add Files dialog box.

Click Open to select the file or files.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

1-29

1 Getting Started

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”. For more
information about the differences between standalones and Windows
standalone, see “What’s the Difference Between a Windows Standalone
Application and a Console/Standalone Application?” on page 4-2 in this
User’s Guide.

5 When you complete your changes, click the Build button (). When the
build finishes, click Close to dismiss the dialog box.

What Gets Built?
After you build your shared library with the Deployment Tool, you have the
following in the src and distrib subdirectories of your project directory:

These Subdirectories of the Project
Directory:

Contain these files:

src • ProjectName.dll — contains your
executable program code.

• ProjectName.lib— the library, containing
a stub for loading and calling the DLL.

• ProjectName.exp— EXPORTS library file

• ProjectName.exports— EXPORTS file

• ProjectName.h — the C/C++ header file,
containing a prototype for calling the
function contained in the LIB file (which
ultimately calls the DLL).

• ProjectName.c or ProjectName.cpp the
C/C++ source.

• readme.txt — contains information about
how to use this built component

1-30

Create a Shared Library from MATLAB Code

These Subdirectories of the Project
Directory:

Contain these files:

• .log — lists functions that were not
compiled or included in this build.

distrib • ProjectName.dll — contains your
executable program code.

• ProjectName.lib — the library, which
contains a stub for loading and calling the
DLL.

• ProjectName.h — the C/C++ header file,
which contains a prototype for calling the
function contained in the LIB file (which
ultimately calls the DLL).

• readme.txt — contains information about
how to use this built component

1-31

1 Getting Started

Integrate a Shared Library With a C/C++ Application
You integrate your shared library by “Writing a Driver Application for a
Shared Library” on page 8-5 and calling your libraries using wrappers and
a combination of API function calls.

Note Unlike shared libraries, you simply distribute a standalone application
with end users. You do not need to integrate it with an application.

If you’re using this programming
language....

See this topic and examples....

C “C Shared Library Wrapper” on page
8-4“C Shared Library Example” on
page 8-4

C++ “C++ Shared Library Wrapper”
on page 8-18“C++ Shared Library
Example” on page 8-18

1-32

Call the C or C++ Application

Call the C or C++ Application
1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

Caution Avoid issuing cd commands from the driver application prior to
calling mclInitializeApplication. Failure to do so can cause a failure in
MCR initialization.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

Note If your driver application displays MATLAB figure windows, you
should include a call to mclWaitForFiguresToDie(NULL) before calling
the Terminate functions and mclTerminateApplication in the following
two steps.

5 Call, once for each library, <lib>Terminate, to destroy the associated MCR.

1-33

1 Getting Started

Caution <lib>Terminate will bring down enough of the MCR address
space that the same library (or any other library) cannot be initialized.
Issuing a <lib>Initialize call after a <lib>Terminate call causes
unpredictable results. Instead, use the following structure:

...code...
mclInitializeApplication();
lib1Initialize();
lib2Initialize();

lib1Terminate();
lib2Terminate();
mclTerminateApplication();
...code...

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

1-34

Distribute MATLAB Code to End Users

Distribute MATLAB Code to End Users

In this section...

“Gathering Files Necessary for Deployment” on page 1-36

“Distribute to End Users” on page 1-36

“Distributing MATLAB Code Using the MATLAB Compiler Runtime
(MCR)” on page 1-36

The C or C++ developer performs these additional tasks to prepare integrating
the shared library in an enterprise environment.

C/C++ Developer

Role Knowledge Base Responsibilities

C/C++
developer

• Little to no MATLAB experience

• Moderate IT experience

• C/C++ expert

• Minimal access to IT systems

• Integrates deployed component with
the rest of the C or C++ application

• Integrates deployed MATLAB
Figures with the rest of the C or C++
application

Key Tasks for the C or C++ Developer

Task Reference

Ensure that you have the needed
files from the MATLAB programmer
before proceeding.

“Gathering Files Necessary for
Deployment” on page 1-36

Distribute the files. “Distribute to End Users” on page
1-36

Install the MCR on target computers
by running the MCR Installer.
Update system paths on UNIX
systems.

“Distributing MATLAB Code Using
the MATLAB Compiler Runtime
(MCR)” on page 1-36

1-35

1 Getting Started

Gathering Files Necessary for Deployment
Before beginning, verify that you have access to the following files, packaged
by the MATLAB programmer in “Packaging (Optional)” on page 1-21. End
users who do not have a copy of MATLAB installed need the following:

• MCR Installer. For locations of all MCR Installers, run the mcrinstaller
command.

• readme.txt file

See “Packaging (Optional)” on page 1-21 for more information about these
files.

Distribute to End Users
If the MATLAB programmer packages the library (see “Packaging (Optional)”
on page 1-21), paste the package in a folder on the target machine, and run it.
If you are using an archive file, extract the contents to the target machine.

Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the deployment machine.

Install MATLAB Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of MATLAB
files on systems without an installed version of MATLAB.

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB® Compiler. Direct your end users to the MATLAB
Compiler product page to download the MCR, as opposed to redistributing or
packaging it with your applications or components.

In order to deploy a component, you can either package the MCR along with it
or simply direct your end users to download it from the Web.

1-36

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

Distribute MATLAB Code to End Users

Before you utilize the MCR on a system without MATLAB, run the MCR
Installer. Locate the installer by entering the mcrinstaller command from
MATLAB.

The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

MCR Prerequisites

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

3 Avoid installing the MCR in MATLAB installation directories.

Add the MCR Installer To Your Deployment Package
Include the MCR in your deployment by using the Deployment Tool.

On the Package tab of the deploytool interface, click Add MCR.

Note For more information about additional options for including the MCR
Installer (embedding it in your package or locating the installer on a network
share), see “Packaging (Optional)” on page 1-21 in the MATLAB Compiler
documentation or in your respective Builder User’s Guide.

1-37

1 Getting Started

Testing with the MCR
When you test with the MCR, keep in mind that the MCR is an instance of
MATLAB. Given this, it is not possible to load the MCR into MATLAB.

For example, if you build a generic COM component with the Deployment
Tool from MATLAB Builder NE, you generate a DLL.

If you then try to test the component with an application such as actxserver,
which loads its process into MATLAB, you are effectively loading the MCR
into MATLAB, producing an error such as this:

mwsamp.mymagic(3,[],[])
??? Invoke Error, Dispatch Exception:
Source: tmw1.Class1.1_0
Description: MCR instance is not available

Therefore, understand the behaviors of third-party processes before
attempting to test them with the MCR.

If you are uncertain about the behavior of these processes, contact your
developer or systems administrator.

MCR Path Settings and Installation
To install the MCR, perform the following tasks on the target machines:

1 If you added the MCR during packaging, open the package to locate the
installer. Otherwise, run the command mcrinstaller to display the
locations where you can download the installer.

2 If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application
to find the MCR.

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See Appendix B, “Using MATLAB® Compiler™ on
Mac or Linux” for detailed information on performing all deployment tasks
specifically with UNIX variants such as Linux and Mac.

1-38

For More Information

For More Information

About This Look Here

Detailed information on
standalone applications

“Deploying Standalone Applications” on page 7-3

Creating libraries “Integrate C Shared Libraries” on page 8-4
“Integrate C++ Shared Libraries” on page 8-18

Using the mcc command “mcc Command Line Arguments Grouped by
Task” on page A-8

Troubleshooting “Common Issues” on page 9-4
“Failure Points and Possible Solutions” on page
9-5
“Troubleshooting mbuild” on page 9-15
“MATLAB® Compiler™” on page 9-17
“Deployed Applications” on page 9-21

1-39

1 Getting Started

1-40

2

Installation and
Configuration

• “Before You Install MATLAB® Compiler™” on page 2-2

• “Installing MATLAB® Compiler™” on page 2-5

• “Configuring the MCR Installer For Invocation From a Network Location”
on page 2-6

• “Configuring Your Options File with mbuild” on page 2-7

• “Solving Installation Problems” on page 2-13

2 Installation and Configuration

Before You Install MATLAB Compiler

In this section...

“Install MATLAB” on page 2-2

“Install an ANSI C or C++ Compiler” on page 2-2

Systems Administrator

Role Knowledge Base Responsibilities

Systems
administrator

• No MATLAB experience

• Access to IT Systems

• IT expert

• Gets updates to a deployed component
or the larger application out to end
users

• Manages versions of the application
for end users

• Manages versions of the MCR

Install MATLAB
To install MATLAB, refer to the MATLAB Installation Guide.

See MATLAB Compiler Platform & Requirements for details. The memory
and disk requirements to run MATLAB Compiler software are the same as
the requirements for MATLAB.

Install an ANSI C or C++ Compiler
Install supported ANSI® C or C++ compiler on your system. Certain output
targets require particular compilers.

To install your ANSI C or C++ compiler, follow vendor instructions that
accompany your C or C++ compiler.

Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult your C or C++ compiler vendor.

2-2

http://www.mathworks.com/support/compilers/current_release/

Before You Install MATLAB® Compiler™

Supported ANSI C and C++ Windows Compilers
Use one of the following 32-bit C/C++ compilers that create 32-bit Windows
dynamically linked libraries (DLLs) or Windows applications:

• lcc C version 2.4.1 (included with MATLAB). lcc is a C-only compiler;
it does not compile code with C++.

• Microsoft Visual C++® (MSVC).

- The only compiler that supports the building of COM objects and Excel
plug-ins is Microsoft Visual C++.

- The only compiler that supports the building of .NET objects is Microsoft
Visual C# Compiler for the Microsoft .NET Framework.

See the MATLAB Builder NE Release Notes for a list of supported .NET
Framework versions.

Note For an up-to-date list of all the compilers supported by MATLAB
and MATLAB Compiler, see the MathWorks Technical Support notes at:

http://www.mathworks.com/support/compilers/current_release/

Supported ANSI C and C++ UNIX Compilers
MATLAB Compiler software supports the native system compilers on:

• Linux

• Linux x86-64

• Mac OS X

MATLAB Compiler software supports gcc and g++.

Common Installation Issues and Parameters
When you install your C or C++ compiler, you sometimes encounter requests
for additional parameters. The following tables provide information about
common issues occurring on Windows and UNIX® systems where you
sometimes need additional input or consideration.

2-3

http://www.mathworks.com/support/compilers/current_release/

2 Installation and Configuration

Windows Operating System

Issue Comment

Installation options (Recommended) Full installation.

Installing debugger files For the purposes of MATLAB
Compiler, it is not necessary to
install debugger (DBG) files.

Microsoft Foundation Classes (MFC) Not needed.

16-bit DLLs Not needed.

ActiveX® Not needed.

Running from the command line Make sure that you select all
relevant options for running your
compiler from the command line.

Updating the registry If your installer gives you the option
of updating the registry, perform
this update.

Installing Microsoft Visual C++
Version 6.0

To change the install location of the
compiler, change the location of the
Common folder. Do not change the
location of the VC98 folder from its
default setting.

UNIX Operating System

Issue Comment

Determine which C or C++ compiler
is available on your system.

See your system administrator.

Determine the path to your C or C++
compiler.

See your system administrator.

Installing on Maci64 Install X Code from installation
DVD.

2-4

Installing MATLAB® Compiler™

Installing MATLAB Compiler

In this section...

“Installing Your Product” on page 2-5

“Compiler Options” on page 2-5

Installing Your Product
To install MATLAB Compiler software on Windows, follow the instructions in
the MATLAB Installation Guide. If you have a license to install MATLAB
Compiler, select the product as you proceed through the installation process.

Compiler Options
MATLAB Compiler software requires a supported ANSI C or C++ compiler on
your system. Refer to the “Install an ANSI C or C++ Compiler” on page 2-2
for more information.

2-5

2 Installation and Configuration

Configuring the MCR Installer For Invocation From a
Network Location

Download the MCR from the Web at
http://www.mathworks.com/products/compiler/mcr

When you deploy an application, you have an option to either embed the MCR
in the package or invoke the MCR installer from a network location.

As Systems Administrator, you should:

• Decide which option makes the most sense to implement for your
installation. See “Packaging (Optional)” on page 1-21 for more information
and criteria for making your selection.

• Communicate what option you select to your end users to prevent them
from creating multiple copies of the MCR Installer on various network
shares, providing you choose the network invocation option.

2-6

http://www.mathworks.com/products/compiler/mcr

Configuring Your Options File with mbuild

Configuring Your Options File with mbuild

In this section...

“What Is mbuild?” on page 2-7

“When Not to Use mbuild -setup” on page 2-7

“Running mbuild” on page 2-8

“Locating and Customizing the Options File” on page 2-10

What Is mbuild?
Running the mbuild configuration script creates an option file that:

• Sets the default compiler and linker settings for each supported compiler.

• Allows you to changes compilers or compiler settings.

• Builds (compiles) your application.

Note The following mbuild examples apply only to the 32-bit version of
MATLAB.

About mbuild and Linking
Static linking is not an option for applications generated by MATLAB
Compiler. Compiled applications all must link against MCLMCRRT. This shared
library explicitly dynamically loads other shared libraries. You cannot change
this behavior on any platform.

When Not to Use mbuild -setup
Run mbuild -setup before using any deployment product unless you are
doing one of the following:

• Using MATLAB Builder JA

• Using MATLAB Builder NE

2-7

2 Installation and Configuration

• Creating a standalone or Windows standalone target with MATLAB
Compiler

Running mbuild

1 Run mbuild -setup from MATLAB.

2 Select a compiler. Additional platform-specific information follows.

Note The compiler-specific options file specifies that your compiler
contains flags and settings to control the operation of the installed C and
C++ compiler. For information on modifying the options file to customize
your compiler settings, see “Locating and Customizing the Options File”
on page 2-10.

Windows
Executing mbuild -setup on Windows displays a message of this type:

Welcome to mbuild -setup. This utility will help you set up
a default compiler. For a list of supported compilers, see
http://www.mathworks.com/support/compilers/R2012b/win64.html

Please choose your compiler for building shared libraries
or COM components:

Would you like mbuild to locate installed compilers [y]/n? y

Select a compiler:
[1] Microsoft Visual C++ 2010 in C:\Program Files (x86)\

Microsoft Visual Studio 10.0
[2] Microsoft Visual C++ 2008 SP1 in c:\Program Files (x86)\

Microsoft Visual Studio 9.0
[3] Microsoft Visual C++ 2005 SP1 in C:\Program Files (x86)\

Microsoft Visual Studio 8

[0] None

2-8

Configuring Your Options File with mbuild

The preconfigured options files included with MATLAB for Windows appear
in the following table.

Note These options apply only to the 32-bit version of MATLAB.

Options File Compiler

lcccompp.bat Lcc C, Version 2.4.1 (included with MATLAB)

msvc60compp.bat
msvc80compp.bat

msvc90compp.bat

msvc100compp.bat

Microsoft Visual C/C++, Version 6.0
Microsoft Visual C/C++, Version 8.0
Microsoft Visual C/C++, Version 8.0 Express
Edition
Microsoft Visual C/C++, Version 9.0
Microsoft Visual C/C++, Version 9.0 Express
Edition
Microsoft Visual C/C++, Version 10.0
Microsoft Visual C/C++, Version 10.0 Express
Edition

UNIX
Executing the command on UNIX displays a message of this type:

mbuild -setup

Using the 'mbuild -setup' command selects an options file that
is placed in ~/.matlab/current_release and
used by default for 'mbuild'. An options file in the current

working directory or specified on
the command line overrides the default options file
in ~/.matlab/current_release.

Options files control which compiler to use, the compiler
and link command options, and the run time libraries to link
against.

To override the default options file, use the 'mbuild -f'
command (see 'mbuild -help' for more information).

2-9

2 Installation and Configuration

The options files available for mbuild are:

1: matlabroot/bin/mbuildopts.sh :
Build and link with MATLAB C-API or MATLAB Compiler-generated
library via the system ANSI C/C++ compiler

matlabroot/bin/mbuildopts.sh is being copied to
/home/user/.matlab/current_release/mbuildopts.sh

The preconfigured options file for UNIX is mbuildopts.sh, which uses gcc for
Linux and Macintosh.

See the reference page for more information about mbuild. For examples of
mbuild usage, see “Compiling the Driver Application” on page 8-21.

Locating and Customizing the Options File

• “Locating the Options File” on page 2-10

• “Changing the Options File” on page 2-11

Locating the Options File

Windows Operating System. To locate your options file on Windows, the
mbuild script searches the following locations:

• Current folder

• The user profile folder

mbuild uses the first occurrence of the options file it finds. If it finds no
options file, mbuild searches your machine for a supported C compiler and
uses the factory default options file for that compiler. If mbuild finds multiple
compilers, it prompts you to select one.

The Windows user profile folder contains user-specific information
such as desktop appearance, recently used files, and Start menu
items. The mbuild utility stores its options files, compopts.bat,

2-10

Configuring Your Options File with mbuild

in a subfolder of your user profile folder, named Application
Data\MathWorks\MATLAB\current_release.

Under Windows with user profiles enabled, your user profile folder is
%windir%\Profiles\username. However, with user profiles disabled, your
user profile folder is %windir%. You can determine if user profiles are
enabled by using the Passwords control panel.

UNIX Operating System. To locate your options file on UNIX, the mbuild
script searches the following locations:

• Current folder

• $HOME/.matlab/current_release

• matlabroot/bin

mbuild uses the first occurrence of the options file it finds. If mbuild finds no
options file, an errors message appears.

Changing the Options File
Although it is common to use one options file for all of your MATLAB Compiler
related work, you can change your options file at anytime. The setup option
resets your default compiler to use the new compiler every time. To reset your
C or C++ compiler for future sessions, enter:

mbuild -setup

Modifying the Options File on Windows. You can use the -setup option
to change your options file settings on Windows. The -setup option copies the
appropriate options file to your user profile folder.

To modify your options file on Windows:

1 Enter mbuild -setup to make a copy of the appropriate options file in
your local area.

2 Edit your copy of the options file in your user profile folder to correspond
to your specific needs, and save the modified file.

2-11

2 Installation and Configuration

After completing this process, the mbuild script uses the new options file
every time with your modified settings.

Modifying the Options File on UNIX. You can use the setup option to
change your options file settings on UNIX. For example, to change the current
linker settings, use the setup option.

The setup option creates a user-specific matlab folder in your home folder
and copies the appropriate options file to the folder.

Do not confuse these user-specific matlab folders with the system matlab
folder.

To modify your options file on the UNIX:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file to correspond to your specific needs, and
save the modified file.

2-12

Solving Installation Problems

Solving Installation Problems
You can contact MathWorks:

• Via the Web at www.mathworks.com. On the MathWorks home page,
click My Account to access your MathWorks Account, and follow the
instructions.

• Via email at service@mathworks.com.

2-13

http://www.mathworks.com

2 Installation and Configuration

2-14

3

MATLAB Code Deployment

• “MATLAB Application Deployment Products ” on page 3-2

• “Application Deployment Products and the Deployment Tool” on page 3-4

• “Write Deployable MATLAB Code” on page 3-12

• “How the Deployment Products Process MATLAB Function Signatures”
on page 3-17

• “Load MATLAB Libraries using loadlibrary” on page 3-19

• “Use MATLAB Data Files (MAT Files) in Compiled Applications” on page
3-21

3 MATLAB® Code Deployment

MATLAB Application Deployment Products
MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Serves as tool builder

• Uses tools to create a component that
is used by the C or C++ developer

The following table and figure summarizes the target applications supported
by each product.

MATLAB Suite of Application Deployment Products

Product Target Stand-
alones?

Function
Libraries?

Graphical
Apps?

Web
Apps?

WebFigures?

MATLAB
Compiler

C and C++
standalones

Yes Yes Yes No No

MATLAB
Builder NE

C# .NET
components
Visual
Basic COM
components

No Yes Yes Yes Yes

MATLAB
Builder JA

Java
components

No Yes Yes Yes Yes

MATLAB
Builder EX

Microsoft
Excel
add-ins

No Yes Yes No No

3-2

MATLAB® Application Deployment Products

MATLAB® Application Deployment Products

As this figure illustrates, each of the builder products uses the MATLAB
Compiler core code to create deployable components.

3-3

3 MATLAB® Code Deployment

Application Deployment Products and the Deployment Tool

In this section...

“What Is the Difference Between the Deployment Tool and the mcc
Command Line?” on page 3-4

“How Does MATLAB® Compiler™ Software Build My Application?” on
page 3-4

“Dependency Analysis Function (depfun)” on page 3-7

“MEX-Files, DLLs, or Shared Libraries” on page 3-8

“Component Technology File (CTF Archive)” on page 3-8

What Is the Difference Between the Deployment Tool
and the mcc Command Line?
When you use the Deployment Tool (deploytool) GUI, you perform any
function you would invoke using the MATLAB Compiler mcc command-line
interface. The Deployment Tool interactive menus and dialogs build mcc
commands that are customized to your specification. As such, your MATLAB
code is processed the same way as if you were compiling it using mcc.

Deployment Tool advantages include:

• You perform related deployment tasks with a single intuitive GUI.

• You maintain related information in a convenient project file.

• Your project state persists between sessions.

• Your previous project loads automatically when the Deployment Tool starts.

• You load previously stored compiler projects from a prepopulated menu.

• Package applications for distribution.

How Does MATLAB Compiler Software Build My
Application?
To build an application, MATLAB Compiler software performs these tasks:

3-4

Application Deployment Products and the Deployment Tool

1 Parses command-line arguments and classifies by type the files you provide.

2 Analyzes files for dependencies using the Dependency Analysis Function
(depfun). Dependencies affect deployability and originate from functions
called by the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

• File deployability — Whether the file is deployable outside of MATLAB

For more information about depfun, see “Dependency Analysis Function
(depfun)” on page 3-7.

3-5

3 MATLAB® Code Deployment

MATLAB® Compiler™ Build Process

3-6

Application Deployment Products and the Deployment Tool

3 Validates MEX-files. In particular, mexFunction entry points are verified.
For more details about MEX-file processing, see “MEX-Files, DLLs, or
Shared Libraries” on page 3-8.

4 Creates a CTF archive from the input files and their dependencies. For
more details about CTF archives see “Component Technology File (CTF
Archive)” on page 3-8.

5 Generates target-specific wrapper code. For example, a C main function
requires a very different wrapper than the wrapper for a Java interface
class.

6 Invokes a third-party target-specific compiler to create the appropriate
binary software component (a standalone executable, a Java JAR file,
and so on).

Dependency Analysis Function (depfun)
MATLAB Compiler uses a dependency analysis function (depfun) to determine
the list of necessary files to include in the CTF package. Sometimes, this
process generates a large list of files, particularly when MATLAB object
classes exist in the compilation and depfun cannot resolve overloaded methods
at compile time. Dependency analysis also processes include/exclude files
on each pass (see the mcc flag “-a Add to Archive” on page 12-22).

Tip To improve compile time performance and lessen application size, prune
the path with “-N Clear Path” on page 12-38, “-p Add Directory to Path” on
page 12-40. You can also specify Toolboxes on Path in the deploytool
Settings

For more information about depfun, addpath, and rmpath, see “Dependency
Analysis Function (depfun) and User Interaction with the Compilation Path”
on page 4-14.

depfun searches for executable content such as:

• MATLAB files

• P-files

3-7

3 MATLAB® Code Deployment

• Java classes and .jar files

• .fig files

• MEX-files

depfun does not search for data files of any kind. You must manually include
data files in the search

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that
depfun can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

• Because depfun cannot examine MEX-files, DLLs, or shared libraries to
determine their dependencies, explicitly include all executable files these
files require. To do so, use either the mcc -a option or the options on the
Advanced tab in the Deployment Tool under Settings.

• If you have any doubts that depfun can find a MATLAB function called by
a MEX-file, DLL, or shared library, then manually include that function.
To do so, use either the mcc -a option or by using the options on the
Advanced tab in the Deployment Tool under Settings.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

Component Technology File (CTF Archive)
Each application or shared library you produce using MATLAB Compiler
has an associated Component Technology File (CTF) archive. The archive
contains all the MATLAB based content (MATLAB files, MEX-files, and so
on) associated with the component.

MATLAB Compiler also embeds a CTF archive in each generated binary. The
CTF houses all deployable files. All MATLAB files encrypt in the CTF archive
using the Advanced Encryption Standard (AES) cryptosystem.

3-8

Application Deployment Products and the Deployment Tool

If you choose to extract the CTF archive as a separate file, the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “MCR Component Cache and CTF
Archive Embedding” on page 6-14

MATLAB Builder NE “MCR Component Cache and CTF
Archive Embedding”

MATLAB Builder JA “Using MCR Component Cache and
MWComponentOptions”

MATLAB Builder EX Using MCR Component Cache and
CTF Archive Embedding

3-9

3 MATLAB® Code Deployment

3-10

Application Deployment Products and the Deployment Tool

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel
components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deletes the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Note CTF archives are extracted by default to
user_name\AppData\Local\Temp\userid\mcrCachen.nn.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

3-11

3 MATLAB® Code Deployment

Write Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on
page 3-12

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 3-13

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 3-14

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 3-14

“Do Not Create or Use Nonconstant Static State Variables” on page 3-15

“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on
page 3-15

Compiled Applications Do Not Process MATLAB Files
at Runtime
MATLAB Compiler secures your code against unauthorized changes.
Deployable MATLAB files are suspended or frozen at the time MATLAB
Compiler encrypts them—they do not change from that point onward. This
does not mean that you cannot deploy a flexible application—it means that
you must design your application with flexibility in mind. If you want the end
user to be able to choose between two different methods, for example, both
methods must be available in the built component.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

3-12

Write Deployable MATLAB® Code

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in
deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic run time
processing, your end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many developers are prone to this
behavior since it mimics the actions they usually perform on the command
line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See the next section for details.

3-13

3 MATLAB® Code Deployment

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

For an example of using isdeployed, see “Passing Arguments to and from a
Standalone Application” on page 6-26.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

3-14

Write Deployable MATLAB® Code

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

• Static variables in MEX-files

• Static variables in Java code

The state of these variables is persistent and shared with everything in the
process.

When deploying applications, using persistent variables can cause problems
because the MCR process runs in a single thread. You cannot load more than
one of these non-constant, static variables into the same process. In addition,
these static variables do not work well in multithreaded applications.

When programming with the builder components, you should be aware that
an instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX. When
programming with Microsoft Excel, you can assign global variables to large
matrices that persist between calls.

Get Proper Licenses for Toolbox Functionality You
Want to Deploy
You must have a valid MathWorks® license for toolboxes you use to create
deployable components.

3-15

3 MATLAB® Code Deployment

If you do not have a valid license for your toolbox, you cannot create a
deployable component with it.

3-16

How the Deployment Products Process MATLAB® Function Signatures

How the Deployment Products Process MATLAB Function
Signatures

In this section...

“MATLAB Function Signature” on page 3-17

“MATLAB Programming Basics” on page 3-17

MATLAB Function Signature
MATLAB supports multiple signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

All arguments represent a specific MATLAB type.

When the compiler or builder product processes your MATLAB code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments.

In addition to these methods, the builder creates another method that defines
the return values of the MATLAB function as an input argument. This
method simulates the feval external API interface in MATLAB.

MATLAB Programming Basics

Creating a Deployable MATLAB Function
Virtually any calculation that you can create in MATLAB can be deployed, if
it resides in a function. For example:

3-17

3 MATLAB® Code Deployment

>> 1 + 1

cannot be deployed.

However, the following calculation:

function result = addSomeNumbers()
result = 1+1;

end

can be deployed because the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an
input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

3-18

Load MATLAB Libraries using loadlibrary

Load MATLAB Libraries using loadlibrary

Note It is important to understand the difference between the following:

• MATLAB loadlibrary function — Loads shared library into MATLAB.

• Operating system loadlibrary function — Loads specified Windows
or UNIX operating system module into the address space of the calling
process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB
file prototypes as described below to load your library in a compiled
application. Loading libraries using H-file headers is not supported in
compiled applications. This behavior occurs when loadlibrary is compiled
with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following at the MATLAB
command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of a MATLAB file you would like to use
when loading this library. This step only needs to be performed once to
generate a MATLAB file for the library.

In the code that is be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

It is only required to add the prototype .m file and .dll file to the CTF archive
of the deployed application. There is no need for .h files and C/C++ compilers
to be installed on the deployment machine if the prototype file is used.

Once the prototype file is generated, add the file to the CTF archive of the
application being compiled. You can do this with the -a option (if using the

3-19

3 MATLAB® Code Deployment

mcc command) or by dragging it under Other/Additional Files (as a helper
file) if using the Deployment Tool.

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB
files will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library MATLAB file in the compilation with the -a option with mcc.

Restrictions on Using MATLAB Function loadlibrary
with MATLAB Compiler
Note the following limitations in regards to using loadlibrary with MATLAB
Compiler. For complete documentation and up to date restrictions on
loadlibrary, please reference the MATLAB documentation.

• You can not use loadlibrary inside of MATLAB to load a shared library
built with MATLAB Compiler.

• With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you cannot
compile calls to loadlibrary because of general restrictions and limitations
of the product.

3-20

Use MATLAB Data Files (MAT Files) in Compiled Applications

Use MATLAB Data Files (MAT Files) in Compiled Applications

In this section...

“Explicitly Including MAT files Using the %#function Pragma” on page 3-21

“Load and Save Functions” on page 3-21

“MATLAB Objects” on page 3-24

Explicitly Including MAT files Using the %#function
Pragma
MATLAB Compiler excludes MAT files from “Dependency Analysis Function
(depfun)” on page 3-7 by default.

If you want MATLAB Compiler to explicitly inspect data within a MAT file,
you need to specify the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Neural Network Toolbox,
you need to use the %#function pragma within your GUI code to include a
dependency on the gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by either using WHICH (to locate its full path name)
define it relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “Component Technology File
(CTF Archive)” on page 3-8.

See the ctfroot reference page for more information about ctfroot.

3-21

3 MATLAB® Code Deployment

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data for
Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata/extra_data.mat

• ../externdata/extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.

2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
'./userdata/extra_data.mat' -a
'../externdata/extern_data.mat'

ex_loadsave.m.

function ex_loadsave

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata/extra_data.mat

% ../externdata/extern_data.mat

%

% Compile this example with the mcc command:

% mcc -m ex_loadsave.m -a 'user_data.mat' -a

% './userdata/extra_data.mat'

% -a '../externdata/extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

3-22

Use MATLAB Data Files (MAT Files) in Compiled Applications

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% ./output/saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

3-23

3 MATLAB® Code Deployment

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

result = data1*data2;

disp('A * B = ');

disp(result);

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

MATLAB Objects
When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

3-24

Use MATLAB Data Files (MAT Files) in Compiled Applications

Using the %#function pragma in this manner forces depfun to load needed
class definitions, enabling the MCR to successfully load the object.

3-25

3 MATLAB® Code Deployment

3-26

4

C and C++ Standalone
Executable and Shared
Library Creation

• “Supported Compilation Targets” on page 4-2

• “Standalone Executable and Shared Library Creation From MATLAB
Code” on page 4-5

• “Input and Output Files” on page 4-8

• “Dependency Analysis Function (depfun) and User Interaction with the
Compilation Path” on page 4-14

4 C and C++ Standalone Executable and Shared Library Creation

Supported Compilation Targets

In this section...

“When to Create a Standalone Application” on page 4-2

“What’s the Difference Between a Windows Standalone Application and a
Console/Standalone Application?” on page 4-2

“When to Create a Shared Library” on page 4-3

When to Create a Standalone Application
Standalone Applications (or standalones) are C or C++ executable binaries
designed to be executed on demand, usually by a single user or process.

Standalones are self-contained executable binaries and, when bundled with
the MATLAB Compiler Runtime (MCR) can be a powerful solution when
rolled out to a limited group of users. For example, creating a standalone
from the MATLAB function magic enables you (or an end user) to execute
that function by simply double-clicking or running magic.exe, created by
MATLAB Compiler.

The non-dependent nature of a standalone makes it ideal for deploying to a
limited numbers of users, usually in informal, loosely structured test and
research development environments. This differs from a shared library,
for example, which is more often integrated with enterprise C and C++
applications.

What’s the Difference Between a Windows
Standalone Application and a Console/Standalone
Application?
If you are using a non-Windows operating system, “console applications” are
referred to as “standalone applications”.

Windows standalones differ from regular standalones in that Windows
standalones suppress their MS-DOS window output.

4-2

Supported Compilation Targets

The equivalent method to specify a Windows standalone target on the mcc
command line is “-e Suppress MS-DOS Command Window” on page 12-29.

Note If you are using a non-Windows operating system, console applications
are referred to as standalone applications.

When to Create a Shared Library
A shared library is a file that is intended to be shared by executable files,
usually as part of an enterprise or large-scale application.

Creating a shared library allows you to create code that can be integrated into
applications coded in either C or C++.

It is an ideal solution for MATLAB programmers who want to share their
code with a large number of users, generally in a highly-structured software
development environment.

Shared libraries contain C or C++ code that is often run automatically when a
program is started. Modules used by a program are loaded from individual
shared libraries into memory at load time or run time, rather than being
copied statically, by a linker, when it creates a single monolithic executable
file for the program.

For example, the MATLAB Compiler Runtime (MCR), which contains
numerous executables called by user application code, is made up of shared
libraries.

C Shared Libraries
Many procedural or non-object oriented applications run against C shared
libraries. C is a popular language for interfacing with system infrastructures
and other forms of low-level computing. Since C applications often utilize
low-level features of computer operating systems, they generally cannot be
ported easily to other platforms.

4-3

4 C and C++ Standalone Executable and Shared Library Creation

C++ Shared Libraries
C++ shared libraries have the advantage of utilizing object-oriented
methodology and can also incorporate C language subroutines, if needed. C++
is generally used to develop enterprise applications that closely mimic the
logic of business and real-world systems. Like C applications, however, C++
applications generally cannot be ported easily to other platforms.

4-4

Standalone Executable and Shared Library Creation From MATLAB Code

Standalone Executable and Shared Library Creation From
MATLAB Code

In this section...

“Build Standalone Executables and Shared Libraries Using the Deployment
Tool ” on page 4-5

“Build Standalone Executables and Shared Libraries Using the Command
Line (mcc)” on page 4-5

“Watch a Video” on page 4-7

Build Standalone Executables and Shared Libraries
Using the Deployment Tool
For a complete overview of the process of building and integrating an
application from start to finish with the graphical Deployment Tool, read “The
Magic Square Example” on page 1-13 in the MATLAB Compiler User’s Guide.

Build Standalone Executables and Shared Libraries
Using the Command Line (mcc)
You can use the command line to execute the Deployment Tool GUI as well
run mcc command.

• “Building Standalone Applications and Shared Libraries Using the
Command Line” on page 4-6

• “Using the Deployment Tool from the Command Line” on page 4-6

Note The Deployment Tool command line interface (CLI) can be run from the
MATLAB command line window, the Windows command line, or a UNIX shell.

4-5

4 C and C++ Standalone Executable and Shared Library Creation

Building Standalone Applications and Shared Libraries Using
the Command Line
Instead of the GUI, you can use the mcc command to run MATLAB Compiler.
The following table shows sample commands to create a standalone
application or a shared library using mcc at the operating system prompt.

Desired Result Command

mcc -m mymfunction.m
Standalone application
from the MATLAB file
mymfunction

Creates a standalone application named mymfunction.exe on
Windows platforms and mymfunction on platforms that are not
Windows.

mcc -B csharedlib:libfiles file1.m file2.m file3.m
C shared library from
the MATLAB files
file1.m, file2.m, and
file3.m

Creates a shared library named libfiles.dll on Windows,
libfiles.so on Linux, and libfiles.dylib on Mac OS X.

mcc -B cpplib:libfiles file1.m file2.m file3.m
C++ shared library
from the MATLAB files
file1.m, file2.m, and
file3.m

Creates a shared library named libfiles.dll on Windows,
libfiles.so on Linux, and libfiles.dylib on Mac OS X.

Using the Deployment Tool from the Command Line
Start the Deployment Tool from the command line by using one of the
following options.

You can start deploytool in this manner on all platforms supported by
MATLAB Compiler.

Desired Results Command

Start Deployment Tool GUI with the
New/Open dialog box active

deploytool (default)
or
deploytool -n

Start Deployment Tool GUI and load
project_name

deploytool project_name.prj

4-6

Standalone Executable and Shared Library Creation From MATLAB Code

Desired Results Command

Start Deployment Tool command line interface
and build project_name after initializing

deploytool -build project_name.prj

Start Deployment Tool command line interface
and package project_name after initializing

deploytool -package project_name.prj

Start Deployment Tool and package an
existing project from the Command Line
Interface. Specifying the package_name is
optional. By default, a project is packaged into
a .zip file. On Windows, if the package_name
ends with .exe, the project is packaged into
a self-extracting .exe.

deploytool -package project_name.prj
package_name

Display MATLAB Help for the deploytool
command

deploytool -?

Watch a Video
Watch a video about deploying applications using MATLAB Compiler.

4-7

4 C and C++ Standalone Executable and Shared Library Creation

Input and Output Files

In this section...

“Standalone Executable” on page 4-8

“C Shared Library” on page 4-9

“C++ Shared Library” on page 4-11

“Macintosh 64 (Maci64)” on page 4-13

Standalone Executable
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a standalone called foo.

mcc -m foo.m bar.m

File Description

foo The main file of the application. This file reads and
executes the content stored in the embedded CTF
archive. On Windows, this file is foo.exe.

run_component.sh mcc generates run_<component>.sh file on UNIX
(including Mac) systems for standalone applications. It
temporarily sets up the environment variables needed
at runtime and executes the application. On Windows,
mcc doesn’t generate this run script file, because the
environment variables have already been set up by the
installer. In this case, you just run your standalone
.exe file.

4-8

Input and Output Files

C Shared Library
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a C shared library called libfoo.

mcc -W lib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.c The library wrapper C source file containing
the exported functions of the library
representing the C interface to the two
MATLAB functions (foo.m and bar.m) as well
as library initialization code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C source file containing data needed by the
MCR to initialize and use the library. This
data includes path information, encryption
keys, and other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the
library.

libfoo The shared library binary file. On Windows,
this file is libfoo.dll.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

4-9

4 C and C++ Standalone Executable and Shared Library Creation

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports, usually a dynamic-link library (.dll).
The import library is used to resolve references
to those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from
the import library to build the lookup table for
using identifiers that are not included in the
.dll. When an application or .dll is linked, an
import library may be generated, which will
be used for all future .dlls that depend on the
symbols in the application or .dll.

4-10

Input and Output Files

C++ Shared Library
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a C++ shared library called libfoo.

mcc -W cpplib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.cpp The library wrapper C++ source file containing
the exported functions of the library representing
the C++ interface to the two MATLAB functions
(foo.m and bar.m) as well as library initialization
code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C++ source file containing data needed by the
MCR to initialize and use the library. This data
includes path information, encryption keys, and
other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the library.

libfoo The shared library binary file. On Windows, this
file is libfoo.dll.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

4-11

4 C and C++ Standalone Executable and Shared Library Creation

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports (usually a dynamic-link library (.dll).
The import library is used to resolve references to
those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from the
import library to build the lookup table for using
identifiers that are not included in the .dll. When
an application or .dll is linked, an import library
may be generated, which will need to be used for
all future .dlls that depend on the symbols in the
application or .dll.

4-12

Input and Output Files

Macintosh 64 (Maci64)
For 64-bit Macintosh, a Macintosh application bundle is created.

File Description

foo.app The bundle created for executable foo.
Execution of the bundle occurs through
foo.app/Contents/MacOS/foo.

foo Application

run_component.sh The generated shell script which executes the
application through the bundle.

4-13

4 C and C++ Standalone Executable and Shared Library Creation

Dependency Analysis Function (depfun) and User
Interaction with the Compilation Path

addpath and rmpath in MATLAB
If you run MATLAB Compiler from the MATLAB prompt, you can use the
addpath and rmpath commands to modify the MATLAB path before doing a
compilation. There are two disadvantages:

• The path is modified for the current MATLAB session only.

• If MATLAB Compiler is run outside of MATLAB, this doesn’t work unless a
savepath is done in MATLAB.

Note The path is also modified for any interactive work you are doing in
the MATLAB environment as well.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to
use for the current compilation. This feature is useful when you are compiling
files that are in folders currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed
manipulation of the path. This feature acts like a “filter” applied to the
MATLAB path for a given compilation. The first option is -N. Passing -N on
the mcc command line effectively clears the path of all folders except the
following core folders (this list is subject to change over time):

• matlabroot/toolbox/matlab

• matlabroot/toolbox/local

• matlabroot/toolbox/compiler/deploy

• matlabroot/toolbox/compiler

4-14

Dependency Analysis Function (depfun) and User Interaction with the Compilation Path

It also retains all subfolders of the above list that appear on the MATLAB
path at compile time. Including -N on the command line allows you to
replace folders from the original path, while retaining the relative ordering
of the included folders. All subfolders of the included folders that appear
on the original path are also included. In addition, the -N option retains
all folders that the user has included on the path that are not under
matlabroot/toolbox.

Use the -p option to add a folder to the compilation path in an order-sensitive
context, i.e., the same order in which they are found on your MATLAB path.
The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an
absolute path, it is assumed to be under the current working folder. The rules
for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path, the
folder and all its subfolders that appear on the original path are added to
the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path,
that folder is not included in the compilation. (You can use -I to add it.)

• If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the folder
is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

4-15

4 C and C++ Standalone Executable and Shared Library Creation

4-16

5

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers
and to end users.

• “Overview” on page 5-2

• “Deploying to Developers” on page 5-3

• “Deploying to End Users” on page 5-9

• “Working with the MCR” on page 5-17

• “Deploy Applications Created Using Parallel Computing Toolbox” on page
5-37

• “Deploying a Standalone Application on a Network Drive (Windows Only)”
on page 5-44

• “MATLAB® Compiler™ Deployment Messages” on page 5-46

• “Using MATLAB® Compiler™ Generated DLLs in Windows Services” on
page 5-47

• “Reserving Memory for Deployed Applications with MATLAB Memory
Shielding” on page 5-48

5 Deployment Process

Overview
After you create a library, a component, or an application, the next step is
typically to deploy it to others to use on their machines, independent of the
MATLAB environment. These users can be developers who want to use the
library or component to develop an application, or end users who want to
run a standalone application.

• “Deploying to Developers” on page 5-3

• “Deploying to End Users” on page 5-9

Note When you deploy, you provide the wrappers for the compiled MATLAB
code and the software needed to support the wrappers, including the MCR.
The MCR is version specific, so you must ensure that developers as well as
users have the proper version of the MCR installed on their machines.

Watch a Video
Watch a video about deploying applications using MATLAB Compiler.

5-2

Deploying to Developers

Deploying to Developers

In this section...

“Procedure” on page 5-3

“What Software Does a Developer Need?” on page 5-4

“Ensuring Memory for Deployed Applications” on page 5-8

Procedure

Note If you are programming on the same machine where you created the
component, you can skip the steps described here.

1 Create a package that contains the software necessary to support the compiled
MATLAB code. It is frequently helpful to install the MCR on development
machines, for testing purposes. See “What Software Does a Developer Need?”
on page 5-4

Note You can use the Deployment Tool to create a package for developers.
For Windows platforms, the package created by the Deployment Tool is a
self-extracting executable. For UNIX platforms, the package created by
the Deployment Tool is a zip file that must be decompressed and installed
manually. See “The Magic Square Example” on page 1-13 to get started using
the Deployment Tool.

2 Write instructions for how to use the package.

a If your package was created with the Deployment Tool, Windows developers
can just run the self-extracting executable created by the Deployment Tool.
UNIX developers must unzip and install manually.

b All developers must set path environment variables properly. See .

3 Distribute the package and instructions.

5-3

5 Deployment Process

What Software Does a Developer Need?
The software that you provide to a developer who wants to use compiled
MATLAB code depends on which of the following kinds of software the
developer will be using:

• “Standalone Application” on page 5-4

• “C or C++ Shared Library” on page 5-5

• “.NET Component” on page 5-6

• “COM Component” on page 5-6

• “Java Component” on page 5-7

• “COM Component to Use with Microsoft® Excel®” on page 5-7

Standalone Application
To distribute a standalone application created with MATLAB Compiler to a
development machine, create a package that includes the following files.

Software Module Description

MCR Installer
(Windows)

The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application. This file is included with
MATLAB Compiler. Run mcrinstaller function
to obtain name of executable.

MCR Installer (Linux) The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application on UNIX machines (other
than Mac). This file is included with MATLAB
Compiler. Run mcrinstaller function to obtain
name of binary.

MCR Installer (Mac) Run mcrinstaller function to obtain name of
binary.

5-4

Deploying to Developers

Software Module Description

application_name.exe
(Windows)

application_name
(UNIX)

application_name.app
(Maci64)

Application created by MATLAB Compiler.
Maci64 must include the bundle directory
hierarchy.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

C or C++ Shared Library
To distribute a shared library created with MATLAB Compiler to a
development machine, create a package that includes the following files.

Software Module Description

MCR Installer
(Windows)

MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond
to the end user’s platform. Run mcrinstaller
function to obtain name of executable.

MCR Installer (Mac) The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application on Mac machines. This file
is included with MATLAB Compiler. Run
mcrinstaller function to obtain name of binary.

MCR Installer (Linux) Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform. Run
mcrinstaller function to obtain name of binary.

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

5-5

5 Deployment Process

Software Module Description

libmatrix.h Library header file

libmatrix.lib Application library file needed to create the driver
application for the shared library.

.NET Component
To distribute a .NET component to a development machine, create a package
that includes the following files.

Software Module Description

componentName.xml Documentation files

componentName.pdb (if Debug
option is selected)

Program Database File, which
contains debugging information

componentName.dll Component assembly file

MCR Installer MCR Installer (if not already
installed on the target machine).
Run mcrinstaller function to
obtain name of executable.

COM Component
To distribute a COM component to a development machine, create a package
that includes the following files.

Software Module Description

mwcomutil.dll Utilities required for array processing.
Provides type definitions used in data
conversion.

componentname_
version.dll

Component that contains compiled MATLAB
code.

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

5-6

Deploying to Developers

Software Module Description

The MCR Installer installs MATLAB
Compiler Runtime (MCR), which users
of your component need to install on the
target machine once per release. Run
mcrinstaller function to obtain name of
executable.

Java Component
To distribute a Java component to a development machine, create a package
that includes the componentname.jar file, a Java package containing the
Java interface to MATLAB code.

Note For more information, see the MWArray Javadoc, which is searchable
from the Help or from the MathWorks Web site.

COM Component to Use with Microsoft Excel
To distribute a COM component for Excel to a development machine, create a
package that includes the following files.

Software Module Description

componentname_projectversion.dll Compiled component.

MCR Installer Self-extracting MATLAB
Compiler Runtime library
utility; platform-dependent file
that must correspond to the end
user’s platform.

The MCR Installer installs the
MATLAB Compiler Runtime
(MCR), which users of your
component need to install on
the target machine once per
release. Run mcrinstaller

5-7

http://www.mathworks.com

5 Deployment Process

Software Module Description

function to obtain name of
executable.

*.xla Any user-created Excel
add-in files found in the
<projectdir>\distrib folder

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 5-48
for more information.

5-8

Deploying to End Users

Deploying to End Users

In this section...

“Steps by the Developer to Deploy to End Users” on page 5-9

“What Software Does the End User Need?” on page 5-12

“Using Relative Paths with Project Files” on page 5-15

“Porting Generated Code to a Different Platform” on page 5-15

“Extracting a CTF Archive Without Executing the Component” on page 5-15

“Ensuring Memory for Deployed Applications” on page 5-16

Steps by the Developer to Deploy to End Users
For an end user to run an application or use a library that contains compiled
MATLAB code, there are two sets of tasks. Some tasks are for the developer
who developed the application or library, and some tasks are for the end user.

1 Create a package that contains the software needed at run time. See “What
Software Does a Developer Need?” on page 5-4 for more details.

5-9

5 Deployment Process

Note The package for end users must include the .ctf file, which includes
all the files in your preferences folder. Be aware of the following with regards
to preferences:

• MATLAB preferences set at compile time are inherited by the compiled
application. Therefore, include no files in your preferences folder that you
do not want exposed to end users.

• Preferences set by a compiled application do not affect the MATLAB
preferences, and preferences set in MATLAB do not affect a compiled
application until that application is recompiled. MATLAB does not save
your preferences folder until you exit MATLAB. Therefore, if you change
your MATLAB preferences, stop and restart MATLAB before attempting to
recompile using your new preferences.

.

The preferences folder is as follows:

• $HOME/.matlab/current_release on UNIX

• system root\profiles\user\application data\mathworks\
matlab\current_release on Windows

The folder will be stored in the CTF archive in a folder with a generated
name, such as:

mwapplication_mcr/myapplication_7CBEDC3E1DB3D462C18914C13CBFA649.

2 Write instructions for the end user. See “Steps by the End User” on page 5-10.

3 Distribute the package to your end user, along with the instructions.

Steps by the End User

1 Open the package containing the software needed at run time.

2 Run MCRInstaller once on the target machine, that is, the machine where
you want to run the application or library. The MCRInstaller opens a

5-10

Deploying to End Users

command window and begins preparation for the installation. See “Using the
MCR Installer GUI” on page 5-11.

3 If you are deploying a Java application to end users, they must set the class
path on the target machine.

Note for Windows® Applications You must have administrative privileges
to install the MCR on a target machine since it modifies both the system
registry and the system path.

Running the MCRInstaller after the MCR has been set up on the target
machine requires only user-level privileges.

Using the MCR Installer GUI

1 When the MCR Installer wizard appears, click Next to begin the installation.
Click Next to continue.

2 In the Select Installation Folder dialog box, specify where you want to install
the MCR and whether you want to install the MCR for just yourself or others.
Click Next to continue.

Note The Install MATLAB Compiler Runtime for yourself, or for
anyone who uses this computer option is not implemented for this release.
The current default is Everyone.

3 Confirm your selections by clicking Next.

The installation begins. The process takes some time due to the quantity of
files that are installed.

The MCR Installer automatically:

• Copies the necessary files to the target folder you specified.

• Registers the components as needed.

5-11

5 Deployment Process

• Updates the system path to point to the MCR binary folder, which is
<target_directory>/<version>/runtime/win32|win64.

4 When the installation completes, click Close on the Installation Completed
dialog box to exit.

What Software Does the End User Need?
The software required by end users depends on which of the following kinds
of software is to be run by the user:

• “Standalone Compiled Application That Accesses Shared Library” on page
5-12

• “.NET Application” on page 5-13

• “COM Application” on page 5-13

• “Java Application” on page 5-14

• “Microsoft® Excel® Add-in” on page 5-14

Standalone Compiled Application That Accesses Shared Library
To distribute a shared library created with MATLAB Compiler to end users,
create a package that includes the following files.

Component Description

MCR Installer
(Windows)

Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform.

matrixdriver.exe
(Windows)

matrixdriver
(UNIX)

Application

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

5-12

Deploying to End Users

Component Description

• Linux, Linux x86-64 — .so

• Mac OS X — .dylib

.NET Application
To distribute a .NET application that uses components created with MATLAB
Builder NE, create a package that includes the following files.

Software Module Description

componentName.xml Documentation files

componentName.pdb
(if Debug option is
selected)

Program Database File, which contains debugging
information

componentName.dll Component assembly file

MCR Installer MCR Installer (if not already installed on the
target machine). Run mcrinstaller function to
obtain name of executable.

application.exe Application

COM Application
To distribute a COM application that uses components created with MATLAB
Builder NE or MATLAB Builder EX, create a package that includes the
following files.

Software Module Description

componentname.ctf Component Technology File (ctf) archive.
This is a platform-dependent file that must
correspond to the end user’s platform.

componentname
_version.dll

Component that contains compiled MATLAB
code

_install.bat Script run by the self-extracting executable

5-13

5 Deployment Process

Software Module Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

The MCR Installer installs MATLAB
Compiler Runtime (MCR), which users of
your component need to install on the target
machine once per release. Run mcrinstaller
function to obtain name of executable.

application.exe Application

Java Application
To distribute a Java application created with MATLAB Builder JA, create
a componentname.jar file. To deploy the application on computers without
MATLAB, you must include the MCR when creating your Java component.

Microsoft Excel Add-in
To distribute an Excel add-in created with MATLAB Builder EX, create a
package that includes the following files.

Software Module Description

componentname
_version.dll

Component that contains compiled MATLAB
code

_install.bat Script run by the self-extracting executable

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.
Run mcrinstaller function to obtain name
of executable.

*.xla Any Excel add-in files found in
projectdirectory\distrib

5-14

Deploying to End Users

Using Relative Paths with Project Files
Project files now support the use of relative paths as of R2007b of MATLAB
Compiler, enabling you to share a single project file for convenient deployment
over the network. Simply share your project folder and use relative paths to
define your project location to your distributed computers.

Porting Generated Code to a Different Platform
You can distribute an application generated by MATLAB Compiler to any
target machine that has the same operating system as the machine on
which the application was compiled. For example, if you want to deploy an
application to a Windows machine, you must use the Windows version of
MATLAB Compiler to build the application on a Windows machine.

Note Since binary formats are different on each platform, the components
generated by MATLAB Compiler cannot be moved from platform to platform
as is.

To deploy an application to a machine with an operating system different from
the machine used to develop the application, you must rebuild the application
on the desired targeted platform. For example, if you want to deploy a
previous application developed on a Windows machine to a Linux machine,
you must use MATLAB Compiler on a Linux machine and completely rebuild
the application. You must have a valid MATLAB Compiler license on both
platforms to do this.

Extracting a CTF Archive Without Executing the
Component
CTF archives contain content (MATLAB files and MEX-files) that need to be
extracted from the archive before they can be executed. In order to extract
the archive you must override the default CTF embedding option (see “MCR
Component Cache and CTF Archive Embedding” on page 6-14). To do this,
ensure that you compile your component with the “-C Do Not Embed CTF
Archive by Default” on page 12-27 option.

5-15

5 Deployment Process

The CTF archive automatically expands the first time you run a MATLAB
Compiler-based component (a MATLAB Compiler based standalone
application or an application that calls a MATLAB Compiler-based shared
library, COM, or .NET component).

To expand an archive without running the application, you can use
the extractCTF (.exe on Windows) standalone utility provided in the
matlabroot/toolbox/compiler/arch folder, where arch is your system
architecture, Windows = win32|win64, Linux = glnx86, x86-64 = glnxa64,
and Mac OS X = mac. This utility takes the CTF archive as input and expands
it into the folder in which it resides. For example, this command expands
hello.ctf into the folder where it resides:

extractCTF hello.ctf

The archive expands into a folder called hello_mcr. In general, the name of
the folder containing the expanded archive is <componentname>_mcr, where
componentname is the name of the CTF archive without the extension.

Note To run extractCTF from any folder, you must add
matlabroot/toolbox/compiler/arch to your PATH environment variable.
Run extractCTF.exe from a system prompt. If you run it from MATLAB,
be sure to use the bang (!) operator.

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 5-48
for more information.

5-16

Working with the MCR

Working with the MCR

In this section...

“About the MATLAB® Compiler™ Runtime (MCR)” on page 5-17

“The MCR Installer” on page 5-18

“Installing the MCR Non-Interactively (Silent Mode)” on page 5-26

“Removing (Uninstalling) the MCR” on page 5-28

“Retrieving MCR Attributes” on page 5-30

“Improving Data Access Using the MCR User Data Interface” on page 5-32

“Displaying MCR Initialization Start-Up and Completion Messages For
Users” on page 5-35

About the MATLAB Compiler Runtime (MCR)
MATLAB Compiler uses the MATLAB Compiler Runtime (MCR), a
standalone set of shared libraries that enables the execution of MATLAB files
on computers without an installed version of MATLAB.

If you distribute your compiled components to end-users who do not have
MATLAB installed on their systems, they must install the MATLAB Compiler
Runtime (MCR) on their computers or know the location of a network-installed
MCR. When you packaged your compiled component, you have the option of
including the MCR in the package you distribute to users, or they can download
it from the Web at http://www.mathworks.com/products/compiler/mcr.
The MCR only needs to be installed once a user system.

Note There is no way to distribute your application with any subset of the
files that are installed by the MCR Installer.

See “The MCR Installer” on page 5-18 for more information.

How is the MCR Different from MATLAB?
This MCR differs from MATLAB in several important ways:

5-17

http://www.mathworks.com/products/compiler/mcr

5 Deployment Process

• In the MCR, MATLAB files are securely encrypted for portability and
integrity.

• MATLAB has a desktop graphical interface. The MCR has all of MATLAB’s
functionality without the graphical interface.

• The MCR is version-specific. You must run your applications with the
version of the MCR associated with the version of MATLAB Compiler
with which it was created. For example, if you compiled an application
using version 4.10 (R2009a) of MATLAB Compiler, users who do not have
MATLAB installed must have version 7.10 of the MCR installed. Use
mcrversion to return the version number of the MCR.

• The MATLAB and Java paths in an MCR instance are fixed and cannot be
changed. To change them, you must first customize them within MATLAB.

Performance Considerations and the MCR
MATLAB Compiler was designed to work with a large range of applications
that use the MATLAB programming language. Because of this, run-time
libraries are large.

Since the MCR technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application
takes approximately the same amount of time as starting MATLAB. The
amount of resources consumed by the MCR is necessary in order to retain the
power and functionality of a full version of MATLAB.

The MCR makes use of thread locking so that only one thread is allowed to
access the MCR at a time. As a result, calls into the MCR are threadsafe for
MATLAB Compiler generated libraries, COM objects, and .NET objects. On
the other hand, this can impact performance.

The MCR Installer
Download the MCR from the Web at
http://www.mathworks.com/products/compiler/mcr.

Installing the MCR
To install the MCR, users of your component must run the MCR Installer.
When you packaged your compiled component for distribution, you had the

5-18

http://www.mathworks.com/products/compiler/mcr

Working with the MCR

option to embed the MCR in your application package, or specify the network
location of the MCR.

To install the MCR on any computer, perform these steps.

1 Start the MCR Installer. How you accomplish this depends on your
computer.

Computer Steps

Windows Double-click the compiled component package
self-extracting archive file, typically named
my_program_pkg.exe, where my_program is the name
of the compiled component. This extracts the MCR
Installer from the archive, along with all the files
that make up the MCR. Once all the files have been
extracted, the MCR Installer starts automatically.

Linux

Mac

Extract the contents of the compiled component
package, which is a Zip file on Linux systems, typically
named, my_program_pkg.zip, where my_program is
the name of the compiled component. Use the unzip
command to extract the files from the package.

unzip MCRInstaller.zip

Run the MCR Installer script, from the directory where
you unzipped the package file, by entering:

./install

For example, if you unzipped the package and MCR
Installer in \home\USER, you run the ./install from
\home\USER.

Note On Mac systems, you may need to enter an
administrator username and password after you run
./install.

5-19

5 Deployment Process

2 When the MCR Installer starts, it displays the following dialog box. Read
the information and then click Next to proceed with the installation.

�������	
��

3 Specify the folder in which you want to install the MCR in the Folder
Selection dialog box.

Note On Windows systems, you can have multiple installations of
different versions of the MCR on your computer but only one installation
for any particular version. If you already have an existing installation, the
MCR Installer does not display the Folder Selection dialog box because
you can only overwrite the existing installation in the same folder. On
Linux and Mac systems, you can have multiple installations of the same
version of the MCR.

5-20

Working with the MCR

�	����������������������	��

�������	
��

4 Confirm your choices and click Next. The MCR Installer starts copying
files into the installation folder.

5-21

5 Deployment Process

�������������������	��

��������������

5 On Linux and Macintosh systems, after copying files to your disk, the MCR
Installer displays the Product Configuration Notes dialog box. This dialog
box contains information necessary for setting your path environment
variables. Copy the path information from this dialog box and then click
Next.

5-22

Working with the MCR

�������	
��

6 Click Finish to exit the MCR Installer.

�������������

5-23

5 Deployment Process

MCR Installer Readme File. A readme.txt file is included with the MCR
Installer. This file, visible when the MCR Installer is expanded, provides
more detailed information about the installer and the switches that can be
used with it.

Installing the MCR and MATLAB on the Same Machine
You do not need to install the MCR on your machine if your machine has
both MATLAB and MATLAB Compiler installed. The version of MATLAB
should be the same as the version of MATLAB that was used to create the
deployed component.

You can, however, install the MCR for debugging purposes. See “Modifying
the Path” on page 5-24.

Caution There is a limitation regarding folders on your path. If the target
machine has a MATLAB installation, the <mcr_root> folders must be first on
the path to run the deployed application. To run MATLAB, the matlabroot
folders must be first on the path. This restriction only applies to profiles
involving an installed MCR and an installed MATLAB on the same machine.

Modifying the Path. If you install the MCR on a machine that already has
MATLAB on it, you must adjust the library path according to your needs.

• Windows

To run deployed components against the MCR install,
mcr_root\ver\runtime\win32|win64 must appear on your
system path before matlabroot\runtime\win32|win64.

If mcr_root\ver\runtime\arch appears first on the compiled application
path, the application uses the files in the MCR install area.

If matlabroot\runtime\arch appears first on the compiled application
path, the application uses the files in the MATLAB Compiler installation
area.

• UNIX

To run deployed components against the MCR install, on Linux, Linux
x86-64, or the <mcr_root>/runtime/<arch> folder must appear on

5-24

Working with the MCR

your LD_LIBRARY_PATH before matlabroot/runtime/<arch>, and
XAPPLRESDIR should point to <mcr_root>/X11/app-defaults. See for the
platform-specific commands.

To run deployed components on Mac OS X, the <mcr_root>/runtime
folder must appear on your DYLD_LIBRARY_PATH before
matlabroot/runtime/<arch>, and XAPPLRESDIR should point to
<mcr_root>/X11/app-defaults.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch>
must appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin
folder, and XAPPLRESDIR should point to matlabroot/X11/app-defaults.

Note For detailed information about setting MCR paths on UNIX variants
such as Mac and Linux, see Appendix B, “Using MATLAB® Compiler™ on
Mac or Linux” for complete deployment and troubleshooting information.

Installing Multiple MCRs on One Machine
MCRInstaller supports the installation of multiple versions of the MCR on a
target machine. This allows applications compiled with different versions of
the MCR to execute side by side on the same machine.

If you do not want multiple MCR versions on the target machine, you can
remove the unwanted ones. On Windows, run Add or Remove Programs
from the Control Panel to remove any of the previous versions. On UNIX, you
manually delete the unwanted MCR. You can remove unwanted versions
before or after installation of a more recent version of the MCR, as versions
can be installed or removed in any order.

Note for Mac OS X Users Installing multiple versions of the MCR on the
same machine is not supported on Mac OS X. When you receive a new version
of MATLAB, you must recompile and redeploy all of your applications and
components. Also, when you install a new MCR onto a target machine, you
must delete the old version of the MCR and install the new one. You can only
have one version of the MCR on the target machine.

5-25

5 Deployment Process

Deploying a Recompiled Application. Always run your compiled
applications with the version of the MCR that corresponds to the MATLAB
version with which your application was built. If you upgrade your
MATLAB Compiler software on your development machine and distribute
the recompiled application to your users, you should also distribute the
corresponding version of the MCR. Users should upgrade their MCR to the
new version. If users need to maintain multiple versions of the MCR on their
systems, refer to “Installing Multiple MCRs on One Machine” on page 5-25
for more information.

Installing the MCR Non-Interactively (Silent Mode)
To install the MCR without having to interact with the installer dialog boxes,
use one of the MCR installer non-interactive modes: silent or automated.

Mode Description

silent MCR installer runs as a background task and does
not display any dialog boxes.

automated MCR installer displays the dialog boxes but does not
wait for user interaction.

When run in silent or automated mode, the MCR installer uses default values
for installation options, such as the name of the destination folder. You can
override these defaults by using MCR installer command-line options.

Note If you have already installed the MCR for a particular release in the
default location, the installer overwrites the existing installation, when
running in silent or automated mode.

1 Extract the contents of the MCR installer file to a temporary folder, called
$temp in this documentation.

On Windows systems, double-click the MCR installer self-extracting
archive file, MCRinstaller.exe. You might have to first extract the MCR
installer from the compiled component archive, if you received a package
file from the component developer.

5-26

Working with the MCR

On Linux and Mac systems, use the unzip command:

unzip MCRInstaller.zip

2 Run the MCR installer, specifying the mode option on the command line.

The install script is created in the folder in which you have unzipped the
MCR.

Execute the MCR installer, specifying the mode argument.

setup.exe -mode silent

On a Linux or Mac computer, run the MCR installer script, specifying
the mode argument.

./install -mode silent

3 View a log of the installation.

On Windows systems, the MCR installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name,
in the location defined by your TEMP environment variable.

On Linux and Mac systems, the MCR installer displays the log information
at the command prompt, unless you redirect it to a file.

Customizing a Silent Installation
If you want to specify the installation folder or the name of the log file, use
MCR installer command line options. For example, to specify the installation
folder, use the -destinationFolder option, as follows:

setup.exe -mode silent -destinationFolder C:\my_folder

To specify the name and location of the installation log file, use the
-outputFile option, as follows:

setup.exe -mode silent -destinationFolder C:\my_folder
-outputFile C:\my_log.txt

5-27

5 Deployment Process

Removing (Uninstalling) the MCR
The method you use to remove (uninstall) the MCR from your computer varies
depending on the type of computer.

You can remove unwanted versions before or after installation of a more recent
version of the MCR, as versions can be installed or removed in any order.

Windows

1 Start the uninstaller. From the Windows Start menu, search for the Add
or Remove Programs control panel, and double-click MATLAB Compiler
Runtime in the list. You can also launch the MCR Uninstaller from the
mcr_root\uninstall\bin\arch folder, where mcr_root is your MCR
installation folder and arch is an architecture-specific folder, such as win64.

2 Select the MATLAB Compiler Runtime from the list of products in the
Uninstall Products dialog box and click Next.

����������������

5-28

Working with the MCR

3 After the MCR uninstaller removes the files from your disk, it displays
the Uninstallation Complete dialog box. Click Finish to exit the MCR
uninstaller.

�������������

Linux

1 Exit the application.

2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB
installation folder.

Mac

• Exit the application.

5-29

5 Deployment Process

• Navigate to your MCR installation folder. For example, the installation
folder might be named MATLAB_Compiler_Runtime.app in your
Applications folder.

where mcr_root represents the name of your top-level MATLAB
installation folder.

• Drag your MCR installation folder to the trash, and then select Empty
Trash from the Finder menu.

Retrieving MCR Attributes
Use these new functions to return data about MCR state when working with
shared libraries (this does not apply to standalone applications).

Function and Signature When to Use Return Value

bool
mclIsMCRInitialized()

Use mclIsMCRInitialized()
to determine whether or not
the MCR has been properly
initialized.

Boolean (true or false).
Returns true if MCR is already
initialized, else returns false.

bool mclIsJVMEnabled() Use mclIsJVMEnabled() to
determine if the MCR was
launched with an instance of a
Java Virtual Machine (JVM).

Boolean (true or false).
Returns true if MCR is
launched with a JVM instance,
else returns false.

5-30

Working with the MCR

Function and Signature When to Use Return Value

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log
file used by the MCR

Character string representing
log file name used by MCR

bool mclIsNoDisplaySet() Use mclIsNoDisplaySet()
to determine if -nodisplay
option is enabled.

Boolean (true or false).
Returns true if -nodisplay is
enabled, else returns false.

Note false is always
returned on Windows systems
since the -nodisplay option
is not supported on Windows
systems.

Caution When running on
Mac, if -nodisplay is used as
one of the options included in
mclInitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain.

Note All of these attributes have properties of write-once, read-only.

Retrieving Information from MCR State

const char* options[4];
options[0] = "-logfile";
options[1] = "logfile.txt";
options[2] = "-nojvm";

5-31

5 Deployment Process

options[3] = "-nodisplay";
if(!mclInitializeApplication(options,4))
{

fprintf(stderr,
"Could not initialize the application.\n");

return -1;
}
printf("MCR initialized : %d\n", mclIsMCRInitialized());
printf("JVM initialized : %d\n", mclIsJVMEnabled());
printf("Logfile name : %s\n", mclGetLogFileName());
printf("nodisplay set : %d\n", mclIsNoDisplaySet());
fflush(stdout);

Improving Data Access Using the MCR User Data
Interface
The MCR User Data Interface lets you easily access MCR data. It allows
keys and values to be passed between an MCR instance, the MATLAB code
running on the MCR, and the wrapper code that created the MCR. Through
calls to the MCR User Data Interface API, you access MCR data by creating
a per-MCR-instance associative array of mxArrays, consisting of a mapping
from string keys to mxArray values. Reasons for doing this include, but are
not limited to the following:

• You need to supply run-time profile information to a client running an
application created with the Parallel Computing Toolbox. You supply and
change profile information on a per-execution basis. For example, two
instances of the same application may run simultaneously with different
profiles. See “Deploy Applications Created Using Parallel Computing
Toolbox” on page 5-37 for more information.

• You want to set up a global workspace, a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application
MATLAB code

5-32

Working with the MCR

• Four external C functions callable from within deployed application
wrapper code

Note The MATLAB functions are available to other modules since they
are native to MATLAB. These built-in functions are implemented in the
MCLMCR module, which lives in the standalone folder.

For implementations using .NET components, Java components, or COM
components with Excel, see the MATLAB Builder NE, MATLAB Builder JA,
and MATLAB Builder EX documentation, respectively.

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from
deployed MATLAB applications. They are loaded by default only in
applications created with the MATLAB Compiler or builder products. See
“Improving Data Access Using the MCR User Data Interface” on page 5-32
for more information.

Tip When calling the MATLAB functions getmcruserdata and
setmcruserdata, remember the following:

• These functions will produce an Unknown function error when called in
MATLAB if the MCLMCR module cannot be located. This can be avoided
by calling isdeployed before calling getmcruserdata and setmcruserdata.
For more information about the isdeployed function, see the isdeployed
reference page.

• The MATLAB functions getmcruserdata and setmcruserdata can be
dragged and dropped (as you would any other MATLAB file), directly to
the deploytool GUI.

Setting MCR Data for Standalone Executables
MCR data can be set for a standalone executable with the -mcruserdata
command line argument.

5-33

5 Deployment Process

The following example demonstrates how to set MCR user data for use with a
Parallel Computing Toolbox profile .mat file:

parallelapp.exe -mcruserdata
ParallelConfigurationFile:config.mat

The argument following -mcruserdata is interpreted as a key/value MCR
user data pair, where the colon separates the key from the value. The
standalone executable accesses this data by using getmcruserdata.

Note A compiled application should set mcruserdata
ParallelConfigurationFile before calling any Parallel Computing Toolbox™
code. Once this code has been called, setting ParallelConfigurationFile to
point to a different file has no effect.

Setting and Retrieving MCR Data for Shared Libraries
As mentioned in “Improving Data Access Using the MCR User Data Interface”
on page 5-32, there are many possible scenarios for working with MCR Data.
The most general scenario involves setting the MCR with specific data for
later retrieval, as follows:

1 In your code, Include the MCR header file and the library header generated
by MATLAB Compiler.

2 Properly initialize your application using mclInitializeApplication.

3 After creating your input data, write or “set” it to the MCR with
setmcruserdata .

4 After calling functions or performing other processing, retrieve the new
MCR data with getmcruserdata.

5 Free up storage memory in work areas by disposing of unneeded arrays
with mxDestroyArray.

6 Shut down your application properly with mclTerminateApplication.

5-34

Working with the MCR

Displaying MCR Initialization Start-Up and
Completion Messages For Users
You can display a console message for end users that informs them when
MCR initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB Compiler
Runtime version x.xx)

• Customize the start-up or completion message with text of your choice.
The default start-up message will also display prior to displaying your
customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:

mcc -R -startmsg Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx

mcc -R -startmsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for completion

5-35

5 Deployment Process

This command: Displays:

mcc -R -startmsg,'user
customized message' -R
-completemsg,'user customized
message"

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and completion by
specifying -R before each option

mcc -R -startmsg,'user
customized
message',-completemsg,'user
customized message’

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and completion by
specifying -R only once

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB Command Window, place the comma
inside the single quote. For example:

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'

• If your initialization message has a space in it, call mcc from the system
console or use !mcc from MATLAB.

5-36

Deploy Applications Created Using Parallel Computing Toolbox™

Deploy Applications Created Using Parallel Computing
Toolbox

For information about using the MCR User Data Interface see “Improving
Data Access Using the MCR User Data Interface” in the MATLAB Builder
JA, MATLAB Builder NE, and MATLAB Builder EX User’s Guides.

Compile and Deploy a Standalone Application with
the Parallel Computing Toolbox

Standalone Applications with Profile Passed at Run-Time
This example shows how to compile a standalone application, using functions
from the Parallel Computing Toolbox, with deploytool. In this case, the
profile is passed at runtime.

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server™.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

The output assumes that the default profile is local.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))

n=str2double(n);
end
for ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end

5-37

5 Deployment Process

time1 =toc;
matlabpool('open');
tic
parfor ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...

',parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

' times faster than normal']);
matlabpool('close');
disp('done');
speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if
needed.

a = sample_pct(200)

3 Verify that you get the following results;

Starting matlabpool using the 'local'
profile ... connected to 4 labs.

Normal loop times: 1.4625, parallel loop time: 0.82891
parallel speedup: 1.7643 times faster than normal
Sending a stop signal to all the labs ... stopped.
done
a =

1.7643

Step 2: Export Your Profile

As mentioned above, to compile and deploy Parallel Computing Toolbox
code, you must have access to the MDCS cluster. This step shows you how
to export the cluster profile.

1 In MATLAB, click Parallel > Manage Cluster Profiles. The Manage
Cluster Profiles dialog opens.

5-38

Deploy Applications Created Using Parallel Computing Toolbox™

2 Select your profile (representing the cluster), right click, and select Export
to export the profile.

Step 3: Compile and Deploy Your Application

1 Follow the steps in “Creating a Standalone Application” on page 1-17 to
compile your application. When the compilation finishes, a new folder
(with the same name as the project) is created. This folder contains two
subfolders: distrib and src.

Project Name pct_Compiled

File to compile (add to Main File
area)

sample_pct.m

Note If you are using the GPU feature of Parallel Computing Toolbox, you
need to manually add the PTX and CU files.

If you are using a Deployment Tool project, click Add files/directories
on the Build tab.

If you are using the mcc command, use the -a option.

2 To deploy the compiled application, copy the distrib folder (containing
the executable), the MCR Installer, and the profile, with the cluster
information, to your end users. The packaging function of deploytool
offers a convenient way to do this.

Note The end-user’s target machine must have access to the cluster.

3 To run the deployed application, do the following:

a On the end-user machine, navigate to the folder containing the EXE file.

b Issue the following command:

pct_Compiled.exe 200

5-39

5 Deployment Process

-mcruserdata

ParallelProfile:C:\work9b\pctdeploytool\

pct_Compiled\distrib\myprofile.settings

Note As of R2012a, Parallel Configurations and MAT files have been
replaced with Parallel Profiles. For more information, see the release
notes for the Deployment products and Parallel Computing Toolbox.

To use existing MAT files and ensure backward compatibility with this
change, issue a command such as the following, in the above example:

pct_Compiled.exe 200 -mcruserdata

ParallelProfile:C:\work9b\pctdeploytool\pct_Compiled\distrib\myconfig.mat

If you continue to use MAT files, remember to specify the full path to
the MAT file.

c Verify the output is as follows:

Starting matlabpool using the 'myprofile'
profile ... connected
to 4 labs.

Normal loop times: 1.5712, parallel loop time: 0.90766
parallel speedup: 1.7311 times faster than normal
Sending a stop signal to all the labs ... stopped.
Did not find any pre-existing parallel
jobs created by matlabpool.
done

Standalone Applications with Embedded Profile
This example shows how to compile a standalone application, using functions
from the Parallel Computing Toolbox, with deploytool. In this case, the
profile information is embedded in the CTF archive, and you set up the MCR
to work with Parallel Computing Toolbox using the setmcruserdata function
in MATLAB.

5-40

Deploy Applications Created Using Parallel Computing Toolbox™

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server.

Step 1: Write Your Parallel Computing Toolbox Code

Compile the following two files in MATLAB. Note that, in this example,
run_sample_pct calls sample_pct and supplies the profile directly as MCR
user data.

function speedup = sample_pct (n)
warning off all;
if(ischar(n))

n=str2double(n);
end
tic
for ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
matlabpool('open');
tic
parfor ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...

', parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

' times faster than normal']);
matlabpool('close');
disp('done');
speedup = (time1/time2);

Step 2: Compile and Deploy Your Application

1 Follow the steps in “Creating a Standalone Application” on page 1-17 to
compile your application. When the compilation finishes, a new folder

5-41

5 Deployment Process

(with the same name as the project) is created. This folder contains two
subfolders: distrib and src.

Project Name pct_CompiledWithProfile

File to compile (add to Main File
area)

run_sample_pct.m

Shared Resource and Helper
Files

myprofile.settings
sample_pct.m

2 To deploy the compiled application, copy and distribute the distrib folder
(containing the executable) and the MCR Installer to your end users. The
packaging function of deploytool offers a convenient way to do this.

Note The end-user’s target machine must have access to the cluster.

3 To run the deployed application, do the following:

a On the end-user machine, navigate to directory containing the EXE file.

b Issue the following command. Note that, in this case, you are not
supplying the profile explicitly, since it is included in the CTF archive.

pct_CompiledWithProfile.exe 200

c Verify the output is as follows:

Starting matlabpool using the 'myprofile'
... connected to 4 labs.

Normal loop times: 2.1289, parallel loop time: 1.227
parallel speedup: 1.735 times faster than normal
Sending a stop signal to all the labs ... stopped.
done
speedup =

1.7350

5-42

Deploy Applications Created Using Parallel Computing Toolbox™

Compile and Deploy a Shared Library with the
Parallel Computing Toolbox
The process of deploying a C or C++ shared library with the Parallel
Computing Toolbox is similar to deploying a standalone application.

1 Compile the shared library using the Deployment Tool.

2 Set the file in the C or C++ driver code using the setmcruserdata function.
See the setmcruserdata function reference page for an example.

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server.

5-43

5 Deployment Process

Deploying a Standalone Application on a Network Drive
(Windows Only)

You can deploy a compiled standalone application to a network drive so that it
can be accessed by all network users without having them install the MCR on
their individual machines.

Note There is no need to perform these steps on a Linux system.

There is no requirement for vcredist on Linux, and the component
registration is in support of MATLAB Builder EX and MATLAB COM
Builder, which both run on Windows only.

Distributing to a Linux network file system is exactly the same as distributing
to a local file system. You only need to set up the LD_LIBRARY_PATH or use
scripts which points to the MCR installation.

1 On any Windows machine, run mcrinstaller function to obtain name of
the MCR Installer executable.

2 Copy the entire MCR folder (the folder where MCR is installed) onto a
network drive.

3 Copy the compiled application into a separate folder in the network
drive and add the path <mcr_root>\<ver>\runtime\<arch> to all client
machines. All network users can then execute the application.

4 Run vcredist_x86.exe on for 32-bit clients; run vcredist_x64.exe for
64-bit clients.

5 If you are using MATLAB Builder EX, register mwcomutil.dll and
mwcommgr.dll on every client machine.

If you are using MATLAB Builder NE (to create COM objects), register
mwcomutil.dll on every client machine.

To register the DLLs, at the DOS prompt enter

5-44

Deploying a Standalone Application on a Network Drive (Windows® Only)

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

Note These libraries are automatically registered on the machine on
which the installer was run.

5-45

5 Deployment Process

MATLAB Compiler Deployment Messages
To enable display of MATLAB Compiler deployment messages, see the
MATLAB Desktop Tools and Environment documentation.

5-46

Using MATLAB® Compiler™ Generated DLLs in Windows® Services

Using MATLAB Compiler Generated DLLs in Windows
Services

If you have a Windows service that is built using DLL files generated by
MATLAB Compiler, do the following to ensure stable performance:

1 Create a file named java.opts.

2 Add the following line to the file:

-Xrs

3 Save the file to: MCRROOT/version/runtime/win32|win64, where MCRROOT
is the installation folder of the MATLAB Compiler Runtime and version is
the MCR version (for example, v74 for MATLAB Compiler 4.4 (R2006a)).

Caution Failure to create the java.opts file using these steps may result in
unpredictable results such as premature termination of Windows services.

5-47

5 Deployment Process

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding

In this section...

“What Is MATLAB Memory Shielding and When Should You Use It?” on
page 5-48

“Requirements for Using MATLAB Memory Shielding” on page 5-49

“Invoking MATLAB Memory Shielding for Your Deployed Application”
on page 5-49

What Is MATLAB Memory Shielding and When
Should You Use It?
Occasionally you encounter problems ensuring that you have the memory
needed to run deployed applications. These problems often occur when:

• Your data set is large

• You are trying to compensate for the memory limitations inherent in a
32-bit Windows system

• The computer available to you has limited resources

• Network resources are restrictive

Use MATLAB Memory Shielding to ensure that you obtain the maximum
amount of contiguous memory to run your deployed application successfully.

MATLAB Memory Shielding provides the specified level of protection of the
address space used by MATLAB. When you use this feature, it reserves
the largest contiguous block of memory available for your application after
startup.

Memory shielding works by ensuring that resources, such as DLLs, load into
locations that will not fragment the address space of the system. The feature
provides the specified amount of contiguous address space you specify, up to
the maximum available on the system.

5-48

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

For example, on a 32-bit Windows system, MATLAB defaults to memory
shielding for virtual addresses 0x50000000-0x70000000. At the point where
your application runs, the shield lowers, allowing allocation of that virtual
address space.

Note This topic describes how to invoke the shielding function for deployed
applications, not the MATLAB workspace. To learn more about invoking
memory shielding for MATLAB workspaces, see the discussion of the start-up
option matlab shieldOption in the MATLAB Function Reference Guide.

Requirements for Using MATLAB Memory Shielding
Before using MATLAB Memory Shielding for your deployed applications,
verify that you meet the following requirements:

• Your deployed application is failing because it cannot find the proper
amount of memory and not for another unrelated reason. As a best practice,
let the operating system attempt to satisfy runtime memory requests, if
possible. See “What Is MATLAB Memory Shielding and When Should
You Use It?” on page 5-48 for examples of cases where you can benefit by
using MATLAB Memory Shielding

• Your application runs on a Windows® 32-bit system. While MATLAB
Memory Shielding runs on 64-bit Windows® systems without failing, it
has no effect on your application.

• You are running with a standalone application or Windows executable.
MATLAB Memory Shielding does not work with shared libraries, .NET
components or Java components.

• You have run the MCR Installer on your system to get the MATLAB
Compiler Runtime (MCR). The memory shielding feature is installed with
the MCR.

Invoking MATLAB Memory Shielding for Your
Deployed Application
Invoke memory shielding by using either the command-line syntax or the
GUI. Each approach has appropriate uses based on your specific memory
reservation needs.

5-49

5 Deployment Process

Using the Command Line
Use the command line if you want to invoke memory shielding only with the
various shield_level values (not specific address ranges).

The base command-line syntax is:

MemShieldStarter [-help] [-gui]
[-shield shield_level]
fully-qualified_app_path

[user-defined_app_arguments]

1 Run your application using the default level of memory shielding. Use
the command:

MemShieldStarter fully-qualified_app_path
[user-defined_app_arguments]

2 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause start-up problems. Therefore, start with a
lower level of protection and be conservative when raising the level of
protection.

• Use only memory shielding levels that guarantee a successful execution
of your application. See the table MemShieldStarter Options on page
5-51 for more details on which shield options to choose.

• Contact your system administrator for further advice on successfully
running your application.

3 If your application fails to start, disable memory shielding:

a To disable memory shielding after you have enabled it, run the following
command:

MemShieldStarter -shield none
fully-qualified_app_path

[user-defined_app_arguments]

5-50

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

b Contact your system administrator for further advice on successfully
running your application.

MemShieldStarter Options

Option Description

-help Invokes help for MemShieldStarter

-gui Starts the Windows graphical interface for
MemShieldStarter.exe. See “Using the GUI”
on page 5-52 for more details.

-shield shield_level See “Shield Level Options” on page 5-51.

fully-qualified_application_path The fully qualified path to your user application

user-defined_application_arguments Arguments passed to your user application.
MemShieldStarter.exe only passes user
arguments. It does not alter them.

Shield Level Options. shield_level options are as follows:

• none— This value completely disables memory shielding. Use this value
if your application fails to start successfully with the default (-shield
minimum) option.

• minimum— The option defaults to this setting. Minimum shielding protects
the range 0x50000000 to 0x70000000 during startup until just before
processing matlabrc. This value ensures at least approximately 500 MB
of contiguous memory available up to this point.

When experimenting with a shielding level. start with minimum. To use the
default, do not specify a shield option upon startup. If your application fails
to start successfully using minimum, use -shield none. If your application
starts successfully with the default value for shield_level, try using the
-shield medium option to guarantee more memory.

• medium — This value protects the same range as minimum, 0x50000000
to 0x70000000, but protects the range until just after startup processes
matlabrc. It ensures that there is at least approximately 500 MB of

5-51

5 Deployment Process

contiguous memory up to this point. If MATLAB fails to start successfully
with the -shield medium option, use the default option (-shield
minimum). If MATLAB starts successfully with the -shield medium option
and you want to try to ensure an even larger contiguous block after startup,
try using the -shield maximum option.

• maximum — This value protects the maximum range, which can be up
to approximately 1.5 GB, until just after startup processes matlabrc.
The default memory shielding range for maximum covers 0x10000000 to
0x78000000. If MATLAB fails to start successfully with the -shield
maximum option, use the -shield medium option.

Note The shielding range may vary in various locales. Contact your
system administrator for further details.

Using the GUI
Use the graphical interface to invoke memory shielding for specific address
ranges as well as with specific shield_level values.

1 To start the GUI, run the following at the system command prompt:

MemShieldStarter.exe -gui

The Memory Shielding Starter dialog box opens:

5-52

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

2 Enter the appropriate values as described in MemShieldStarter Options on
page 5-51. Use the default Memory shielding level minimum.

You can specify a specific address range in the Memory address range
fields. Specifying a range override the default 0x50000000 through
0x70000000 address range values required for the shield_level minimum,
for example.

3 Click Run.

4 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause startup problems. Therefore, start with a
lower level of protection and use only what is necessary to guarantee a
successful execution of your application.

• See the table MemShieldStarter Options on page 5-51 for more details
on appropriate shield options for various situations.

5-53

5 Deployment Process

5-54

6

Compiler Commands

This chapter describes mcc, which is the command that invokes MATLAB
Compiler.

• “Command Overview” on page 6-2

• “Simplify Compilation Using Macros” on page 6-5

• “Invoke MATLAB Build Options” on page 6-8

• “MCR Component Cache and CTF Archive Embedding” on page 6-14

• “Explicitly Including a File for Compilation Using the %#function Pragma”
on page 6-17

• “Use the mxArray API to Work with MATLAB Types” on page 6-19

• “Script Files” on page 6-20

• “Compiler Tips” on page 6-23

6 Compiler Commands

Command Overview

In this section...

“Compiler Options” on page 6-2

“Combining Options” on page 6-2

“Conflicting Options on the Command Line” on page 6-3

“Using File Extensions” on page 6-3

“Interfacing MATLAB Code to C/C++ Code” on page 6-4

Compiler Options
mcc is the MATLAB command that invokes MATLAB Compiler. You can issue
the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (standalone mode).

You may specify one or more MATLAB Compiler option flags to mcc. Most
option flags have a one-letter name. You can list options separately on the
command line, for example,

mcc -m -v myfun

Macros are MathWorks supplied MATLAB Compiler options that simplify
the more common compilation tasks. Instead of manually grouping several
options together to perform a particular type of compilation, you can use a
simple macro option. You can always use individual options to customize the
compilation process to satisfy your particular needs. For more information on
macros, see “Simplify Compilation Using Macros” on page 6-5.

Combining Options
You can group options that do not take arguments by preceding the list of
option flags with a single dash (-), for example:

mcc -mv myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

6-2

Command Overview

mcc -v -W main -T link:exe myfun % Options listed separately
mcc -vW main -T link:exe myfun % Options combined

This format is not valid:

mcc -Wv main -T link:exe myfun

In cases where you have more than one option that takes arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

If you include any C or C++ file names on the mcc command line, the files are
passed directly to mbuild, along with any MATLAB Compiler generated C
or C++ files.

Conflicting Options on the Command Line
If you use conflicting options, MATLAB Compiler resolves them from left to
right, with the rightmost option taking precedence. For example, using the
equivalencies in “Macro Options” on page 6-5,

mcc -m -W none test.m

is equivalent to:

mcc -W main -T link:exe -W none test.m

In this example, there are two conflicting -W options. After working from
left to right, MATLAB Compiler determines that the rightmost option takes
precedence, namely, -W none, and the product does not generate a wrapper.

Caution Macros and regular options may both affect the same settings and
may therefore override each other depending on their order in the command
line.

Using File Extensions
The valid, recommended file extension for a file submitted to MATLAB
Compiler is .m. Always specify the complete file name, including the .m

6-3

6 Compiler Commands

extension, when compiling with mcc or you may encounter unpredictable
results.

Note P-files (.p) have precedence over MATLAB files, therefore if both
P-files and MATLAB files reside in a folder, and a file name is specified
without an extension, the P-file will be selected.

Interfacing MATLAB Code to C/C++ Code
To designate code to be compiled with C or C++, rewrite the C or C++ function
as a MEX-file and simply call it from your application. The %#EXTERNAL
pragma is no longer supported.

You can control whether the MEX-file or a MATLAB stub gets called by using
the isdeployed function.

Code Proper Return Types From C and C++ Methods
When coding, keep in mind that LCC compilers can be more strict in enforcing
bool return types from C and void returns from C++ than Microsoft
compilers.

To avoid potential problems, ensure all C methods you write (and reference
from within MATLAB code) return a bool return type indicating the status.
C++ methods should return nothing (void).

6-4

Simplify Compilation Using Macros

Simplify Compilation Using Macros

In this section...

“Macro Options” on page 6-5

“Working With Macro Options” on page 6-5

Macro Options
MATLAB Compiler, through its exhaustive set of options, gives you access
to the tools you need to do your job. If you want a simplified approach to
compilation, you can use one simple option, i.e., macro, that allows you to
quickly accomplish basic compilation tasks. Macros let you group several
options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish
a standard compilation and the multioption alternative.

Macro
Option Bundle File Creates

Option Equivalence
Function Wrapper
| Output Stage
| |

-l macro_option_l Library -W lib -T link:lib

-m macro_option_m Standalone application -W main -T link:exe

Working With Macro Options
The -m option tells MATLAB Compiler to produce a standalone application.
The -m macro is equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information
that they provide to MATLAB Compiler.

6-5

6 Compiler Commands

-m Macro

Option Function

-W main Produce a wrapper file suitable for a standalone
application.

-T link:exe Create an executable link as the output.

Changing Macro Options
You can change the meaning of a macro option by editing the corresponding
macro_option bundle file in matlabroot/toolbox/compiler/bundles. For
example, to change the -m macro, edit the file macro_option_m in the bundles
folder.

Note This changes the meaning of -m for all users of this MATLAB
installation.

Specifying Default Macro Options
As the MCCSTARTUP functionality has been replaced by bundle file technology,
the macro_default file that resides in toolbox\compiler\bundles can be
used to specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

6-6

Simplify Compilation Using Macros

mcc -v -W 'lib:libfoo' -T link:lib foo.m

6-7

6 Compiler Commands

Invoke MATLAB Build Options

In this section...

“Specifying Full Path Names to Build MATLAB Code” on page 6-8

“Using Bundle Files to Build MATLAB Code” on page 6-9

“What Are Wrapper Files?” on page 6-10

“Wrapper Files” on page 6-11

Specifying Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line,
MATLAB Compiler

1 Breaks the full name into the corresponding path name and file names
(<path> and <file>).

2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Paths Names
For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion.
For example, suppose you have two different MATLAB files that are both
named myfile.m and they reside in /home/user/dir1 and /home/user/dir2.
The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

6-8

Invoke MATLAB Build Options

MATLAB Compiler finds the myfile.m in dir1 and compiles it instead of the
one in dir2 because of the behavior of the -I option. If you are concerned that
this might be happening, you can specify the -v option and then see which
MATLAB file MATLAB Compiler parses. The -v option prints the full path
name to the MATLAB file during the dependency analysis phase.

Note MATLAB Compiler produces a warning (specified_file_mismatch) if
a file with a full path name is included on the command line and MATLAB
Compiler finds it somewhere else.

Using Bundle Files to Build MATLAB Code
Bundle files provide a convenient way to group sets of MATLAB Compiler
options and recall them as needed. The syntax of the bundle file option is:

-B <filename>[:<a1>,<a2>,...,<an>]

When used on the mcc command line, the bundle option -B replaces the entire
string with the contents of the specified file. The file should contain only mcc
command-line options and corresponding arguments and/or other file names.
The file may contain other -B options.

A bundle file can include replacement parameters for MATLAB Compiler
options that accept names and version numbers. For example, there is a
bundle file for C shared libraries, csharedlib, that consists of:

-W lib:%1% -T link:lib

To invoke MATLAB Compiler to produce a C shared library using this bundle,
you can use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle file will be replaced with the corresponding
option specified to the bundle file. Use %% to include a % character. It is an
error to pass too many or too few options to the bundle file.

6-9

6 Compiler Commands

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then
the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

Bundle Files Available with MATLAB Compiler
See the following table for a list of bundle files available with MATLAB
Compiler.

Bundle File Creates Contents

cpplib C++ Library -W cpplib:<shared_library_name> -T link:lib

csharedlib C Shared Library -W lib:<shared_library_name> -T link:lib

Note Additional bundle files are available when you have a license for
products layered on MATLAB Compiler. For example, if you have a license
for MATLAB Builder NE , you can use the mcc command with bundle files
that create COM objects and .NET objects.

What Are Wrapper Files?
Wrapper files encapsulate, or wrap, the MATLAB files in your application
with an interface that enables the MATLAB files to operate in a given target
environment.

To provide the required interface, the wrapper does the following:

6-10

Invoke MATLAB Build Options

• Performs wrapper-specific initialization and termination

• Provides the dispatching of function calls to the MCR

To specify the type of wrapper to generate, use the following syntax:

-W <type>

The following sections detail the available wrapper types.

Wrapper Files

• “Main File Wrapper” on page 6-11

• “C Library Wrapper” on page 6-12

• “C++ Library Wrapper” on page 6-12

Main File Wrapper
The -W main option generates wrappers that are suitable for building
standalone applications. These POSIX-compliant main wrappers accept
strings from the POSIX shell and return a status code. They pass these
command-line strings to the MATLAB file function(s) as MATLAB strings.
They are meant to translate “command-like” MATLAB files into POSIX main
applications.

POSIX Main Wrapper. Consider this MATLAB file, sample.m.

function y = sample(varargin)
varargin{:}
y = 0;

You can compile sample.m into a POSIX main application. If you call sample
from MATLAB, you get

sample hello world
ans =
hello

ans =
world

6-11

6 Compiler Commands

ans =
0

If you compile sample.m and call it from the DOS shell, you get

C:\> sample hello world

ans =
hello

ans =
world

C:\>

The difference between the MATLAB and DOS/UNIX environments is the
handling of the return value. In MATLAB, the return value is handled by
printing its value; in the DOS/UNIX shell, the return value is handled as
the return status code. When you compile a function into a POSIX main
application, the return status is set to 0 if the compiled MATLAB file is
executed without errors and is nonzero if there are errors.

C Library Wrapper
The -l option, or its equivalent -W lib:libname, produces a C library
wrapper file. This option produces a shared library from an arbitrary set of
MATLAB files. The generated header file contains a C function declaration
for each of the compiled MATLAB functions. The export list contains the set
of symbols that are exported from a C shared library.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

C++ Library Wrapper
The -W cpplib:libname option produces the C++ library wrapper file. This
option allows the inclusion of an arbitrary set of MATLAB files into a library.

6-12

Invoke MATLAB Build Options

The generated header file contains all of the entry points for all of the
compiled MATLAB functions.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

6-13

6 Compiler Commands

MCR Component Cache and CTF Archive Embedding

In this section...

“Overriding Default Behavior” on page 6-15

“For More Information” on page 6-16

CTF data is automatically embedded directly in the C/C++, main and Winmain,
shared libraries and standalones by default. It is also extracted by default
to a temporary folder.

Automatic embedding enables usage of MCR Component Cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the CTF archive to be
automatically extracted

• Add diagnostic error printing options that can be used when automatically
extracting the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache
for diagnostic reasons. This
can be very helpful if problems

Logging details are turned off
by default (for example, when
this variable has no value).

6-14

MCR Component Cache and CTF Archive Embedding

Environment Variable Purpose Notes

are encountered during CTF
archive extraction.

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

You can override this automatic embedding and extraction behavior by
compiling with the -C option. See “Overriding Default Behavior” on page
6-15 for more information.

Caution If you run mcc specifying conflicting wrapper and target types, the
CTF will not be embedded into the generated component. For example, if
you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the CTF embedded in it, as if you had
specified a -C option to the command line.

Overriding Default Behavior
To extract the CTF archive in a manner prior to R2008a, alongside the
compiled shared library or executable, compile using the option “-C Do Not
Embed CTF Archive by Default” on page 12-27.

You can also implement this override by checking the appropriate Option in
the Deployment Tool.

6-15

6 Compiler Commands

You might want to use this option to troubleshoot problems with the CTF
archive, for example, as the log and diagnostic messages are much more
visible.

For More Information
For more information about the CTF archive, see “Component Technology File
(CTF Archive)” on page 3-8.

6-16

Explicitly Including a File for Compilation Using the %#function Pragma

Explicitly Including a File for Compilation Using the
%#function Pragma

In this section...

“Using feval” on page 6-17

“Using %#function” on page 6-17

Using feval
In standalone mode, the pragma

%#function <function_name-list>

informs MATLAB Compiler that the specified function(s) should be included
in the compilation, whether or not the MATLAB Compiler dependency
analysis detects it. Without this pragma, the MATLAB Compiler dependency
analysis will not be able to locate and compile all MATLAB files used in your
application. This pragma adds the top-level function as well as all the local
functions in the file to the compilation.

You cannot use the %#function pragma to refer to functions that are not
available in MATLAB code.

Using %#function
A good coding technique involves using %#function in your code wherever
you use feval statements. This example shows how to use this technique
to help MATLAB Compiler find the appropriate files during compile time,
eliminating the need to include all the files on the command line.

function ret = mywindow(data,filterName)
%MYWINDOW Applies the window specified on the data.
%

% Get the length of the data.
N= length(data);

% List all the possible windows.

6-17

6 Compiler Commands

% Note the list of functions in the following function pragma is
% on a single line of code.
%#function bartlett, barthannwin, blackman, blackmanharris,
bohmanwin, chebwin, flattopwin, gausswin, hamming, hann, kaiser,
nuttallwin, parzenwin, rectwin, tukeywin, triang

window = feval(filterName,N);
% Apply the window to the data.
ret = data.*window;

6-18

Use the mxArray API to Work with MATLAB Types

Use the mxArray API to Work with MATLAB Types
For full documentation on the mxArray API, see the MATLAB C and Fortran
API Reference documentation.

For a complete description of data types used with mxArray, see MATLAB
External Interfaces documentation.

For general information on data handling, see MATLAB External Interfaces
documentation.

6-19

6 Compiler Commands

Script Files

In this section...

“Converting Script MATLAB Files to Function MATLAB Files” on page 6-20

“Including Script Files in Deployed Applications” on page 6-21

Converting Script MATLAB Files to Function MATLAB
Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function MATLAB files

• Script MATLAB files

Some things to remember about script and function MATLAB files:

• Variables used inside function MATLAB files are local to that function; you
cannot access these variables from the MATLAB interpreter’s workspace
unless they are passed back by the function. By contrast, variables used
inside script MATLAB files are shared with the caller’s workspace; you can
access these variables from the MATLAB interpreter command line.

• Variables that are declared as persistent in a MEX-file may not retain their
values through multiple calls from MATLAB.

MATLAB Compiler can compile script MATLAB files or can compile function
MATLAB files that call scripts. You can either specify an script MATLAB file
explicitly on the mcc command line, or you can specify function MATLAB files
that include scripts.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the MATLAB file.

Running this script MATLAB file from a MATLAB session creates variables m
and t in your MATLAB workspace browser.

If desired, convert this script MATLAB file into a function MATLAB file by
simply adding a function header line.

6-20

Script Files

function houdini(sz)
m = magic(sz); % Assign magic square to m.
t = m .^ 3; % Cube each element of m.
disp(t) % Display the value of t.

MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running the function no longer creates variables
m and t in the MATLAB workspace browser. If it is important to have m
and t accessible from the MATLAB workspace browser, you can change the
beginning of the function to

function [m,t] = houdini(sz)

The function now returns the values of m and t to its caller.

Including Script Files in Deployed Applications
Compiled applications consist of two layers of MATLAB files. The top layer is
the interface layer and consists of those functions that are directly accessible
from C or C++.

In standalone applications, the interface layer consists of only the main
MATLAB file. In libraries, the interface layer consists of the MATLAB files
specified on the mcc command line.

The second layer of MATLAB files in compiled applications includes those
MATLAB files that are called by the functions in the top layer. You can
include scripts in the second layer, but not in the top layer.

For example, you can produce an application from the houdini.m script
MATLAB file by writing a new MATLAB function that calls the script, rather
than converting the script into a function.

function houdini_fcn
houdini;

To produce the houdini_fcn , which will call the houdini.m script MATLAB
file, use

mcc -m houdini_fcn

6-21

6 Compiler Commands

6-22

Compiler Tips

Compiler Tips

In this section...

“Calling a Function from the Command Line” on page 6-23

“Using winopen in a Deployed Application” on page 6-24

“Using MAT-Files in Deployed Applications” on page 6-24

“Compiling a GUI That Contains an ActiveX Control” on page 6-24

“Debugging MATLAB® Compiler™ Generated Executables” on page 6-25

“Deploying Applications That Call the Java Native Libraries” on page 6-25

“Locating .fig Files in Deployed Applications” on page 6-25

“Terminating Figures by Force In a Console Application” on page 6-25

“Passing Arguments to and from a Standalone Application” on page 6-26

“Using Graphical Applications in Shared Library Targets” on page 6-28

“Using the VER Function in a Compiled MATLAB Application” on page 6-28

Calling a Function from the Command Line
You can make a MATLAB function into a standalone that is directly callable
from the system command line. All the arguments passed to the MATLAB
function from the system command line are strings. Two techniques to work
with these functions are:

• Modify the original MATLAB function to test each argument and convert
the strings to numbers.

• Write a wrapper MATLAB function that does this test and then calls the
original MATLAB function.

For example:

function x=foo(a, b)
if (ischar(a)), a = str2num(a), end;
if (ischar(b)), b = str2num(b), end;

% The rest of your MATLAB code here...

6-23

6 Compiler Commands

You only do this if your function expects numeric input. If your function
expects strings, there is nothing to do because that’s the default from the
command line.

Using winopen in a Deployed Application
winopen is a function that depends closely on a computer’s underlying file
system. You need to specify a path to the file you want to open, either
absolute or relative.

When using winopen in deployed mode:

1 Verify that the file being passed to the command exists on the MATLAB
path.

2 Use the which command to return an absolute path to the file.

3 Pass the path to winopen.

Using MAT-Files in Deployed Applications
To use a MAT-file in a deployed application, use the MATLAB Compiler -a
option to include the file in the CTF archive. For more information on the -a
option, see “-a Add to Archive” on page 12-22.

Compiling a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX components, GUIDE creates a
file in the current folder for each such component. The file name consists of
the name of the GUI followed by an underscore (_) and activexn, where n
is a sequence number. For example, if the GUI is named ActiveXcontrol
then the file name would be ActiveXcontrol_activex1. The file name does
not have an extension.

If you use MATLAB Compiler mcc command to compile a GUIDE-created
GUI that contains an ActiveX component, you must use the -a option to add
the ActiveX control files that GUIDE saved in the current folder to the CTF
archive. Your command should be similar to

mcc -m mygui -a mygui_activex1

6-24

Compiler Tips

where mygui_activex1 is the name of the file. If you have more than one
such file, use a separate -a option for each file.

Debugging MATLAB Compiler Generated Executables
As of MATLAB Compiler 4, it is no longer possible to debug your entire
program using a C/C++ debugger; most of the application is MATLAB code,
which can only be debugged in MATLAB. Instead, run your code in MATLAB
and verify that it produces the desired results. Then you can compile it. The
compiled code will produce the same results.

Deploying Applications That Call the Java Native
Libraries
If your application interacts with Java, you need to specify the search path for
native method libraries by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from
matlabroot/toolbox/local/librarypath.txt.

2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MCR library archive
files are installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library
that your application’s Java code needs to load.

Locating .fig Files in Deployed Applications
MATLAB Compiler locates .fig files automatically when there is a MATLAB
file with the same name as the .fig file in the same folder. If the .fig file
does not follow this rule, it must be added with the -a option.

Terminating Figures by Force In a Console Application
The purpose of mclWaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated MATLAB code are
displayed. mclWaitForFiguresToDie takes no arguments. Your application

6-25

6 Compiler Commands

can call mclWaitForFiguresToDie any time during execution. Typically you
use mclWaitForFiguresToDie when:

• There are one or more figures you want to remain open.

• The function that displays the graphics requires user input before
continuing.

• The function that calls the figures was called from main() in a console
program.

When mclWaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Both MATLAB Builder NE and MATLAB Builder JA use
mclWaitForFiguresToDie through the use of wrapper methods. See “Blocking
Execution of a Console Application That Creates Figures” in the MATLAB
Builder NE User’s Guide and “Blocking Execution of a Console Application
that Creates Figures” in the MATLAB Builder JA User’s Guide for more
details and code fragment examples.

Caution Use caution when calling the mclWaitForFiguresToDie function.
Calling this function from an interactive program like Excel can hang the
application. This function should be called only from console-based programs.

Using mclWaitForFiguresToDie with Standalone Applications
Standalone applications will terminate when all of the following are true:

• The deployed main MATLAB function has returned

• There are no open visible figures for at least four seconds

Passing Arguments to and from a Standalone
Application
To pass input arguments to a MATLAB Compiler generated standalone
application, you pass them just as you would to any console-based application.
For example, to pass a file called helpfile to the compiled function called
filename, use

6-26

Compiler Tips

filename helpfile

To pass numbers or letters (e.g., 1, 2, and 3), use

filename 1 2 3

Do not separate the arguments with commas.

To pass matrices as input, use

filename "[1 2 3]" "[4 5 6]"

You have to use the double quotes around the input arguments if there is
a space in it. The calling syntax is similar to the dos command. For more
information, see the MATLAB dos command.

The things you should keep in mind for your MATLAB file before you compile
are:

• The input arguments you pass to your application from a system prompt
are considered as string input. If, in your MATLAB code before compilation,
you are expecting the data in different format, say double, you will need to
convert the string input to the required format. For example, you can use
str2num to convert the string input to numerical data. You can determine
at run time whether or not to do this by using the isdeployed function. If
your MATLAB file expects numeric inputs in MATLAB, the code can check
whether it is being run as a standalone application. For example:

function myfun (n1, n2)
if (isdeployed)
n1 = str2num(n1);
n2 = str2num(n2);

end

• You cannot return back values from your standalone application to the user.
The only way to return values from compiled code is to either display it on
the screen or store it in a file. To display your data on the screen, you either
need to unsuppress (do not use semicolons) the commands whose results
yield data you want to return to the screen or, use the disp command to

6-27

6 Compiler Commands

display the value. You can then redirect these outputs to other applications
using output redirection (> operator) or pipes (only on UNIX systems).

Passing Arguments to a Double-Clickable Application
On Windows, if you want to run the standalone application by double-clicking
it, you can create a batch file that calls this standalone application with the
specified input arguments. Here is an example of the batch file:

rem main.bat file that calls sub.exe with input parameters
sub "[1 2 3]" "[4 5 6]"
@echo off
pause

The last two lines of code keep your output on the screen until you press a
key. If you save this file as main.bat, you can run your code with the specified
arguments by double-clicking the main.bat icon.

Using Graphical Applications in Shared Library
Targets
When deploying a GUI as a shared library to a C/C++ application, use
mclWaitForFiguresToDie to display the GUI until it is explicitly terminated.

Using the VER Function in a Compiled MATLAB
Application
When you use the VER function in a compiled MATLAB application, it will
perform with the same functionality as if you had called it from MATLAB.
However, be aware that when using VER in a compiled MATLAB application,
only version information for toolboxes which the compiled application uses
will be displayed.

6-28

7

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build
standalone applications. You can distribute standalone applications to users
who do not have MATLAB software on their systems.

• “Introduction” on page 7-2

• “Deploying Standalone Applications” on page 7-3

• “Working with Standalone Applications and Arguments” on page 7-8

• “Combining Your MATLAB and C/C++ Code” on page 7-12

7 Standalone Applications

Introduction
Suppose you want to create an application that calculates the rank of a
large magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines. An easier way to create this
application is to write it as one or more MATLAB files, taking advantage of
the power of MATLAB and its tools.

You can create MATLAB applications that take advantage of the
mathematical functions of MATLAB, yet do not require that end users own
MATLAB. Standalone applications are a convenient way to package the power
of MATLAB and to distribute a customized application to your users.

The source code for standalone applications consists either entirely of
MATLAB files or some combination of MATLAB files and MEX-files.

MATLAB Compiler takes your MATLAB files and generates a standalone
executable that allows your MATLAB application to be invoked from outside
of interactive MATLAB.

You can call MEX-files from MATLAB Compiler generated standalone
applications. The MEX-files will then be loaded and called by the standalone
code.

7-2

Deploying Standalone Applications

Deploying Standalone Applications

In this section...

“Compiling the Application” on page 7-3

“Testing the Application” on page 7-3

“Deploying the Application” on page 7-4

“Running the Application” on page 7-6

Compiling the Application
This example takes a MATLAB file, magicsquare.m, and creates a standalone
application, magicsquare.

1 Copy the file magicsquare.m from

matlabroot/extern/examples/compiler

to your work folder.

2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone
application. The -v option (verbose) displays the compilation steps
throughout the process and helps identify other useful information such
as which third-party compiler is used and what environment variables
are referenced.

This command creates the standalone application called magicsquare and
additional files. The Windows platform appends the .exe extension to
the name. See the table in “Standalone Executable” on page 4-8 for the
complete list of files created.

Testing the Application
These steps test your standalone application on your development machine.

7-3

7 Standalone Applications

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 Update your path as described in

2 Run the standalone application from the system prompt (shell prompt on
UNIX or DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to
any target machine that has the same operating system as the machine on
which the application was compiled.

For example, if you want to deploy an application to a Windows machine, you
must use MATLAB Compiler to build the application on a Windows machine.
If you want to deploy the same application to a UNIX machine, you must use
MATLAB Compiler on the same UNIX platform and completely rebuild the
application. To deploy an application to multiple platforms requires MATLAB
and MATLAB Compiler licenses on all the desired platforms.

7-4

Deploying Standalone Applications

Windows
Gather and package the following files and distribute them to the deployment
machine.

Component Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform. Run
the mcrinstaller command to obtain name of
executable.

magicsquare Application; magicsquare.exe for Windows

UNIX
Distribute and package your standalone application on UNIX by packaging
the following files and distributing them to the deployment machine.

Component Description

MCR Installer MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to
the end user’s platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

Maci64
Distribute and package your standalone application on 64-bit Macintosh by
copying, tarring, or zipping as described in the following table.

7-5

7 Standalone Applications

Component Description

MCR Installer MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to
the end user’s platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo

• Distribute by tarring:

tar -cvf myapp.tar myapp.app
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ../myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run
the application on their machines.

Preparing Your Machines
Install the MCR by running the mcrinstaller command to obtain name of
the executable or binary. For more information on running the MCR Installer
utility and modifying your system paths, see “Distributing MATLAB Code
Using the MATLAB Compiler Runtime (MCR)” on page 1-36.

7-6

Deploying Standalone Applications

Executing the Application
Run the magicsquare standalone application from the system prompt and
provide a number representing the size of the desired magic square, for
example, 4.

magicsquare 4

The results are displayed as:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as
string input and you need to consider that in your application. For more
information, see “Passing Arguments to and from a Standalone Application”
on page 6-26.

Note Before executing your MATLAB Compiler generated executable, set
the LD_PRELOAD environment variable to /lib/libgcc_s.so.1.

Executing the Application on 64-Bit Macintosh (Maci64). For 64-bit
Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

7-7

7 Standalone Applications

Working with Standalone Applications and Arguments

In this section...

“Overview” on page 7-8

“Passing File Names, Numbers or Letters, Matrices, and MATLAB
Variables” on page 7-8

“Running Standalone Applications that Use Arguments” on page 7-9

Overview
You usually create a standalone to simply run the application without passing
or retrieving any arguments to or from it.

However, arguments can be passed to standalone applications created using
MATLAB Compiler in the same way that input arguments are passed to
any console-based application.

The following are example commands used to execute an application called
filename from a DOS or Linux command prompt with different types of input
arguments.

Passing File Names, Numbers or Letters, Matrices,
and MATLAB Variables

To Pass.... Use This Syntax.... Notes

A file named helpfile filename helpfile

Numbers or letters filename 1 2 3 a b
c

Do not use commas
or other separators
between the numbers
and letters you pass.

7-8

Working with Standalone Applications and Arguments

To Pass.... Use This Syntax.... Notes

Matrices as input filename "[1 2 3]"
"[4 5 6]"

Place double quotes
around input
arguments to denote a
blank space.

MATLAB variables
for k=1:10
cmd = ['filename ',num2str(k)];
system(cmd);
end

To pass a MATLAB
variable to a program
as input, you must first
convert it to a string.

Running Standalone Applications that Use Arguments
You call a standalone application that uses arguments from MATLAB with
any of the following commands:

• SYSTEM

• DOS

• UNIX

• !

To pass the contents of a MATLAB variable to the program as an input, the
variable must first be converted to a string. For example:

Using SYSTEM, DOS, or UNIX
Specify the entire command to run the application as a string (including input
arguments). For example, passing the numbers and letters 1 2 3 a b c
could be executed using the SYSTEM command, as follows:

system('filename 1 2 3 a b c')

Using the ! (bang) Operator
You can also use the ! (bang) operator, from within MATLAB, as follows:

!filename 1 2 3 a b c

7-9

7 Standalone Applications

When you use the ! (bang) operator, the remainder of the input line is
interpreted as the SYSTEM command, so it is not possible to use MATLAB
variables.

Using a Windows System
To run a standalone application by double clicking on it, you create a batch
file that calls the standalone application with the specified input arguments.
For example:

rem This is main.bat file which calls
rem filename.exe with input parameters

filename "[1 2 3]" "[4 5 6]"
@echo off
pause

The last two lines of code in main.bat are added so that the window displaying
your output stays open until you press a key.

Once you save this file, you run your code with the arguments specified above
by double clicking on the icon for main.bat.

Using a MATLAB File You Plan to Deploy
When running MATLAB files that use arguments that you also plan to deploy
with MATLAB Compiler, keep the following in mind:

• The input arguments you pass to your executable from a system prompt
will be received as string input. Thus, if you expect the data in a different
format (for example, double), you must first convert the string input to the
required format in your MATLAB code. For example, you can use STR2NUM
to convert the string input to numerical data.

• You cannot return values from your standalone application to the user. The
only way to return values from compiled code is to either display it on the
screen or store it in a file.

In order to have data displayed back to the screen, do one of the following:

7-10

Working with Standalone Applications and Arguments

- Unsuppress the commands that yield your return data. Do not use
semicolons to unsuppress.

- Use the DISP command to display the variable value, then redirect the
outputs to other applications using redirects (the > operator) or pipes
(||) on non-Windows systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB
File. Here are two ways to use a MATLAB file to take input arguments and
display data to the screen:

Method 1

function [x,y]=foo(z);

if ischar(z)
z=str2num(z);
else
z=z;
end
x=2*z % Omit the semicolon after calculation to display the value on the sc
y=z^2;
disp(y) %Use DISP command to display the value of a variable explicitly

Method 2

function [x,y]=foo(z);

if isdeployed
z=str2num(z);
end
x=2*z % Omit the semicolon after calculation to display the value on the sc
y=z^2;
disp(y) % Use DISP command to display the value of a variable explicitly

7-11

7 Standalone Applications

Combining Your MATLAB and C/C++ Code
To deploy an application that mixes MATLAB code with C or C++ code,
simply created a shared library target and compile and link as you normally
would using deploytool or mcc.

See the “The Magic Square Example” on page 1-13 in this User’s Guide for
more information.

7-12

8

Libraries

This chapter describes how to use MATLAB Compiler to create libraries.

• “Introduction” on page 8-2

• “Addressing mwArrays Above the 2 GB Limit” on page 8-3

• “Integrate C Shared Libraries” on page 8-4

• “Integrate C++ Shared Libraries” on page 8-18

• “Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code” on
page 8-25

• “About Memory Management and Cleanup” on page 8-37

8 Libraries

Introduction
You can use MATLAB Compiler to create C or C++ shared libraries (DLLs on
Microsoft Windows) from your MATLAB algorithms. You can then write C
or C++ programs that can call the MATLAB functions in the shared library,
much like calling the functions from the MATLAB command line.

8-2

Addressing mwArrays Above the 2 GB Limit

Addressing mwArrays Above the 2 GB Limit
In R2007b, you had to define MX_COMPAT_32_OFF in the mbuild step to address
MWArrays above the 2 GB limit on 64-bit architectures. If you did not define
MX_COMPAT_32_OFF, the compile time variable MX_COMPAT_32 was defined for
you, limiting you to using smaller arrays on all architectures.

In R2008a, the default definition of MX_COMPAT_32 was removed, and large
array support is now the default for both C and C++ code. This default
may, in some cases, cause compiler warnings and errors. You can define
MX_COMPAT_32 in your mbuild step to return to the previously default
behavior.

Code compiled with MX_COMPAT_32 is not 64-bit aware. In addition,
MX_COMPAT_32 controls the behavior of some type definitions. For instance,
when MX_COMPAT_32 is defined, mwSize and mwIndex are defined to ints.
When MX_COMPAT_32 is not defined, mwSize and mwIndex are defined to
size_t. This can lead to compiler warnings and errors with respect to signed
and unsigned mismatches.

In R2008b, all support for MX_COMPAT_32 was removed.

See Appendix D, “C++ Utility Library Reference”, for detailed changes to
mwArray classes and method signatures.

8-3

8 Libraries

Integrate C Shared Libraries

In this section...

“C Shared Library Wrapper” on page 8-4

“C Shared Library Example” on page 8-4

“Calling a Shared Library” on page 8-13

“Using C Shared Libraries On a Mac OS X System” on page 8-17

C Shared Library Wrapper
The C library wrapper option allows you to create a shared library from
an arbitrary set of MATLAB files on both Microsoft Windows and UNIX
operating systems. MATLAB Compiler generates a wrapper file, a header file,
and an export list. The header file contains all of the entry points for all of the
compiled MATLAB functions. The export list contains the set of symbols that
are exported from a C shared library.

Note Even if you are not producing a shared library, you must use -W lib
or -W cpplib when including any MATLAB Compiler generated code into
a larger application.

C Shared Library Example
This example takes several MATLAB files and creates a C shared library. It
also includes a standalone driver application to call the shared library.

Building the Shared Library

1 Copy the following files from matlabroot/extern/examples/compiler to
your work directory:

matlabroot/extern/examples/compiler/addmatrix.m
matlabroot/extern/examples/compiler/multiplymatrix.m
matlabroot/extern/examples/compiler/eigmatrix.m
matlabroot/extern/examples/compiler/matrixdriver.c

8-4

Integrate C Shared Libraries

Note matrixdriver.c contains the standalone application’s main function.

2 To create the shared library, enter the following command on a single line:

mcc -B csharedlib:libmatrix addmatrix.m multiplymatrix.m
eigmatrix.m -v

The -B csharedlib option is a bundle option that expands into

-W lib:<libname> -T link:lib

The -W lib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it libname. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later on.

Writing a Driver Application for a Shared Library

Note You must call mclInitializeApplication once at the beginning
of your driver application. You must make this call before calling any
other MathWorks functions or when linking to a MATLAB library such as
mclmcrrt.lib (for example, before accessing an MWArray). See “Calling a
Shared Library” on page 8-13 for complete details on using a MATLAB
Compiler generated library in your application.

You can use your operating system’s loadlibrary (the Windows loadlibrary
function, for example) to call a MATLAB Compiler shared library function
as long as you first call the initialization and termination functions
mclInitializeApplication() and mclTerminateApplication().

All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

8-5

8 Libraries

Caution Avoid issuing cd commands from the driver application prior to
calling mclInitializeApplication. Failure to do so can cause a failure in
MCR initialization.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

Note If your driver application displays MATLAB figure windows, you
should include a call to mclWaitForFiguresToDie(NULL) before calling
the Terminate functions and mclTerminateApplication in the following
two steps.

5 Call, once for each library, <lib>Terminate, to destroy the associated MCR.

Caution <lib>Terminate will bring down enough of the MCR address
space that the same library (or any other library) cannot be initialized.
Issuing a <lib>Initialize call after a <lib>Terminate call causes
unpredictable results. Instead, use the following structure:

...code...
mclInitializeApplication();
lib1Initialize();
lib2Initialize();

lib1Terminate();
lib2Terminate();
mclTerminateApplication();
...code...

8-6

Integrate C Shared Libraries

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

This example uses matrixdriver.c as the driver application.

Linking to mclmcrrt.lib: How the MCLMCRRT Proxy Layer Handles
Loading of Libraries in \bin. All application and software components
generated by MATLAB Compiler and the associated builder products need to
link against only one MathWorks library, mclmcrrtxx.lib. This versioned
library (with the version represented by xx) provides a proxy API for all the
public functions in MATLAB libraries used for matrix operations, MAT-file
access, utility and memory management, and application runtime.

Caution Deployed applications must only link to mclmcrrtxx.lib. Do not
link to other libraries, such as mclmcr.lib, libmx.lib, and so on.

The relationship between mclmcrrtxx.lib and other MATLAB modules is
shown in the following figure.

8-7

8 Libraries

The MCLMCRRT Proxy Layer

The MCLMCRRT Proxy Layer on page 8-8 graphic depicts solid arrows
designating static linking and dotted arrows designating dynamic linking.

The MCLMCRRT module lies between deployed components and other modules,
providing the following functionality:

• Ensures that multiple versions of the MATLAB Compiler Runtime can
coexist

• Provides a layer of indirection

• Ensures applications are thread-safe

• Loads the dependent (re-exported) libraries dynamically

Other Details

In addition, the figure shows that the MCLMCR contains the run-time
functionality of the deployed components. Additionally, the MCR module
ensures each deployed component runs in its own context at runtime.

8-8

Integrate C Shared Libraries

mclmcrrtxx.lib, in addition to loading the MCLMCR, also dynamically loads
the MX and MAT modules, primarily for mxArray manipulation.

For more information, see the MathWorks Support database and search for
information on the MSVC shared library.

Compiling the Driver Application
To compile the driver code, matrixdriver.c, you use your C/C++ compiler.
Execute the following mbuild command that corresponds to your development
platform. This command uses your C/C++ compiler to compile the code.

mbuild matrixdriver.c libmatrix.lib (Windows)
mbuild matrixdriver.c -L. -lmatrix -I. (UNIX)

Note This command assumes that the shared library and the corresponding
header file created from step 2 are in the current working directory.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

On Windows, if this is not the case, specify the full path to libmatrix.lib,
and use a -I option to specify the directory containing the header file.

This generates a standalone application, matrixdriver.exe, on Windows,
and matrixdriver, on UNIX.

Difference in the Exported Function Signature. The interface to the mlf
functions generated by MATLAB Compiler from your MATLAB file routines
has changed from earlier versions of the product. The generic signature of
the exported mlf functions is

• MATLAB functions with no return values

bool MW_CALL_CONV mlf<function-name>
(<list_of_input_variables>);

• MATLAB functions with at least one return value

8-9

http://www.mathworks.com/support/solutions/

8 Libraries

bool MW_CALL_CONV
mlf<function-name>(int number_of_return_values,

<list_of_pointers_to_return_variables>,
<list_of_input_variables>);

Refer to the header file generated for your library for the exact signature of
the exported function. For example, in the library created in the previous
section, the signature of the exported addmatrix function is

void mlfAddmatrix(int nlhs,mxArray **a,mxArray *a1,mxArray *a2);

Testing the Driver Application
These steps test your standalone driver application and shared library on
your development machine.

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 To run the standalone application, add the directory containing the shared
library that was created in step 2 in “Building the Shared Library” on page
8-4 to your dynamic library path.

2 Update the path for your platform by following the instructions in .

3 Run the driver application from the prompt (DOS prompt on Windows,
shell prompt on UNIX) by typing the application name.

matrixdriver.exe (On Windows)
matrixdriver (On UNIX)
matrixdriver.app/Contents/MacOS/matrixdriver (On Maci64)

The results are displayed as

8-10

Integrate C Shared Libraries

The value of added matrix is:
2.00 8.00 14.00
4.00 10.00 16.00
6.00 12.00 18.00

The value of the multiplied matrix is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the first matrix are:
16.12 -1.12 -0.00

Creating Shared Libraries from C with mbuild
mbuild can also create shared libraries from C source code. If a file with
the extension .exports is passed to mbuild, a shared library is built. The
.exports file must be a text file, with each line containing either an exported
symbol name, or starting with a # or * in the first column (in which case it
is treated as a comment line). If multiple .exports files are specified, all
symbol names in all specified .exports files are exported.

Deploying Standalone Applications That Call MATLAB Compiler
Based Shared Libraries
Gather and package the following files and distribute them to the deployment
machine.

Component Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

8-11

8 Libraries

Component Description

Run the mcrinstaller command to obtain
name of executable.

matrixdriver Application; matrixdriver.exe for Windows

matrixdriver.app for Maci64 (bundle
directory structure must be deployed)

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

• Linux, Linux x86-64 — .so

• Mac OS X — .dylib

Note You can distribute a MATLAB Compiler generated standalone
application to any target machine that has the same operating system as the
machine on which the application was compiled. If you want to deploy the
same application to a different platform, you must use MATLAB Compiler on
the different platform and completely rebuild the application.

Deploying Shared Libraries to Be Used with Other Projects
To distribute the shared library for use with an external application, you need
to distribute the following.

Component Description

MCR Installer (Windows) Self-extracting MATLAB Compiler
Runtime library utility; platform-dependent file
that must correspond to the end user’s platform.
Run the mcrinstaller command to obtain name
of executable.

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

libmatrix.h Library header file

8-12

Integrate C Shared Libraries

Calling a Shared Library
At runtime, there is an MCR instance associated with each individual
shared library. Consequently, if an application links against two MATLAB
Compiler generated shared libraries, there will be two MCR instances created
at runtime.

You can control the behavior of each MCR instance by using MCR options.
The two classes of MCR options are global and local. Global MCR options are
identical for each MCR instance in an application. Local MCR options may
differ for MCR instances.

To use a shared library, you must use these functions:

• mclInitializeApplication

• mclTerminateApplication

Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication
mclInitializeApplication allows you to set the global MCR options. They
apply equally to all MCR instances. You must set these options before
creating your first MCR instance.

These functions are necessary because some MCR options such as whether
or not to start Java, whether or not to use the MATLAB JIT feature, and so
on, are set when the first MCR instance starts and cannot be changed by
subsequent instances of the MCR.

8-13

8 Libraries

Caution You must call mclInitializeApplication once at the beginning
of your driver application. You must make this call before calling any other
MathWorks functions. This also applies to shared libraries. Avoid calling
mclInitializeApplication multiple times in an application as it will cause
the application to hang.

After you call mclTerminateApplication, you may not call
mclInitializeApplication again. No MathWorks functions may be called
after mclTerminateApplication.

Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MCR
initialization.

The function signatures are

bool mclInitializeApplication(const char **options, int count);
bool mclTerminateApplication(void);

mclInitializeApplication. Takes an array of strings (options) that you set
(the same options that can be provided to mcc via the -R option) and a count
of the number of options (the length of the option array). Returns true for
success and false for failure.

mclTerminateApplication. Takes no arguments and can only be called
after all MCR instances have been destroyed. Returns true for success and
false for failure.

The following code example is from matrixdriver.c:

int main(){

mxArray *in1, *in2; /* Define input parameters */
mxArray *out = NULL;/* and output parameters to pass to

the library functions */

double data[] = {1,2,3,4,5,6,7,8,9};

8-14

Integrate C Shared Libraries

/* Call library initialization routine and make sure that
the library was initialized properly */

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){

fprintf(stderr,"could not initialize the library
properly\n");

return -1;
}

/* Create the input data */
in1 = mxCreateDoubleMatrix(3,3,mxREAL);
in2 = mxCreateDoubleMatrix(3,3,mxREAL);
memcpy(mxGetPr(in1), data, 9*sizeof(double));
memcpy(mxGetPr(in2), data, 9*sizeof(double));

/* Call the library function */
mlfAddmatrix(1, &out, in1, in2);
/* Display the return value of the library function */
printf("The value of added matrix is:\n");
display(out);
/* Destroy return value since this variable will be reused

in next function call. Since we are going to reuse the
variable, we have to set it to NULL. Refer to MATLAB
Compiler documentation for more information on this. */

mxDestroyArray(out); out=0;
mlfMultiplymatrix(1, &out, in1, in2);
printf("The value of the multiplied matrix is:\n");
display(out);
mxDestroyArray(out); out=0;
mlfEigmatrix(1, &out, in1);
printf("The Eigen value of the first matrix is:\n");
display(out);
mxDestroyArray(out); out=0;

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;

8-15

8 Libraries

mclTerminateApplication();
return 0;

}

Caution mclInitializeApplication can only be called once per
application. Calling it a second time generates an error, and will cause the
function to return false. This function must be called before calling any C
MEX function or MAT-file API function.

Using a Shared Library
To use a MATLAB Compiler generated shared library in your application,
you must perform the following steps:

1 Include the generated header file for each library in your application. Each
MATLAB Compiler generated shared library has an associated header file
named libname.h, where libname is the library’s name that was passed in
on the command line when the library was compiled.

2 Initialize the MATLAB libraries by calling the mclInitializeApplication
API function. You must call this function once per application, and it must
be called before calling any other MATLAB API functions, such as C-MEX
functions or C MAT-file functions. mclInitializeApplication must be
called before calling any functions in a MATLAB Compiler generated
shared library. You may optionally pass in application-level options to this
function. mclInitializeApplication returns a Boolean status code. A
return value of true indicates successful initialization, and false indicates
failure.

3 For each MATLAB Compiler generated shared library that you include in
your application, call the library’s initialization function. This function
performs several library-local initializations, such as unpacking the CTF
archive, and starting an MCR instance with the necessary information to
execute the code in that archive. The library initialization function will be
named libnameInitialize(), where libname is the library’s name that
was passed in on the command line when the library was compiled. This
function returns a Boolean status code. A return value of true indicates
successful initialization, and false indicates failure.

8-16

Integrate C Shared Libraries

Note On Windows, if you want to have your shared library call a
MATLAB shared library (as generated by MATLAB Compiler), the
MATLAB library initialization function (e.g., <libname>Initialize,
<libname>Terminate, mclInitialize, mclTerminate) cannot be called
from your shared library during the DllMain(DLL_ATTACH_PROCESS) call.
This applies whether the intermediate shared library is implicitly or
explicitly loaded. You must place the call somewhere after DllMain().

4 Call the exported functions of each library as needed. Use the C MEX API
to process input and output arguments for these functions.

5 When your application no longer needs a given library, call the library’s
termination function. This function frees the resources associated with
its MCR instance. The library termination function will be named
<libname>Terminate(), where <libname> is the library’s name that was
passed in on the command line when the library was compiled. Once a
library has been terminated, that library’s exported functions should not
be called again in the application.

6 When your application no longer needs to call any MATLAB Compiler
generated libraries, call the mclTerminateApplication API function. This
function frees application-level resources used by the MCR. Once you call
this function, no further calls can be made to MATLAB Compiler generated
libraries in the application.

Restrictions When using MATLAB Function loadlibrary
You can not use the MATLAB function loadlibrary inside of MATLAB to
load a C shared library built with MATLAB Compiler.

For more information about using loadlibrary, see “Load MATLAB Libraries
using loadlibrary” on page 3-19.

Using C Shared Libraries On a Mac OS X System
For information on using C shared libraries on a Macintosh system, see
“Using C/C++ Shared Libraries on a Mac OS X System” on page 8-23.

8-17

8 Libraries

Integrate C++ Shared Libraries

In this section...

“C++ Shared Library Wrapper” on page 8-18

“C++ Shared Library Example” on page 8-18

C++ Shared Library Wrapper
The C++ library wrapper option allows you to create a shared library from
an arbitrary set of MATLAB files. MATLAB Compiler generates a wrapper
file and a header file. The header file contains all of the entry points for all
of the compiled MATLAB functions.

Note Even if you are not producing a shared library, you must use -W lib
or -W cpplib when including any MATLAB Compiler generated code into a
larger application. For more information, refer to “Combining Your MATLAB
and C/C++ Code” on page 7-12.

C++ Shared Library Example
This example rewrites the previous C shared library example using C++. The
procedure for creating a C++ shared library from MATLAB files is identical
to the procedure for creating a C shared library, except you use the cpplib
wrapper. Enter the following command on a single line:

mcc -W cpplib:libmatrixp -T link:lib addmatrix.m multiplymatrix.m eigmatrix.m -v

The -W cpplib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it <libname>. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later.

8-18

Integrate C++ Shared Libraries

Writing the Driver Application

Note Due to name mangling in C++, you must compile your driver application
with the same version of your third-party compiler that you use to compile
your C++ shared library.

In the C++ version of the matrixdriver application matrixdriver.cpp,
arrays are represented by objects of the class mwArray. Every mwArray class
object contains a pointer to a MATLAB array structure. For this reason, the
attributes of an mwArray object are a superset of the attributes of a MATLAB
array. Every MATLAB array contains information about the size and shape
of the array (i.e., the number of rows, columns, and pages) and either one or
two arrays of data. The first array stores the real part of the array data and
the second array stores the imaginary part. For arrays with no imaginary
part, the second array is not present. The data in the array is arranged in
column-major, rather than row-major, order.

Caution Avoid issuing cd commands from the driver application prior to
calling mclInitializeApplication. Failure to do so can cause a failure
in MCR initialization.

Caution to Mac users: when running the matrixdriver example, invoke
mclInitializeApplication prior to mclRunMain.

Linking to mclmcrrt.lib: How the MCLMCRRT Proxy Layer Handles
Loading of Libraries in \bin. . All application and software components
generated by MATLAB Compiler and the associated builder products need to
link against only one MathWorks library, mclmcrrtxx.lib. This versioned
library (with the version represented by xx) provides a proxy API for all the
public functions in MATLAB libraries used for matrix operations, MAT-file
access, utility and memory management, and application runtime.

8-19

8 Libraries

Caution Deployed applications must only link to mclmcrrtxx.lib. Do not
link to other libraries, such as mclmcr.lib, libmx.lib, and so on.

The relationship between mclmcrrtxx.lib and other MATLAB modules is
shown in the following figure.

The MCLMCRRT Proxy Layer

The MCLMCRRT Proxy Layer on page 8-20 depicts solid arrows designating
static linking and dotted arrows designating dynamic linking.

The MCLMCRRT module lies between deployed components and other modules,
providing the following functionality:

• Ensures that multiple versions of the MATLAB Compiler Runtime can
coexist

• Provides a layer of indirection

• Enforces thread safety

• Loads the dependent (re-exported) libraries dynamically

8-20

Integrate C++ Shared Libraries

Other Details

In addition, the figure shows that the MCLMCR contains the run-time
functionality of the deployed components. Additionally, the MCR module
ensures each deployed component runs in its own context at runtime.
mclmcrrtxx.lib, in addition to loading the MCLMCR, also dynamically loads
the MX and MAT modules, primarily for mxArray manipulation.

For more information, see the MathWorks Support database and search for
information on the MSVC shared library.

Compiling the Driver Application
To compile the matrixdriver.cpp driver code, you use your C++ compiler.
By executing the following mbuild command that corresponds to your
development platform, you will use your C++ compiler to compile the code.

mbuild matrixdriver.cpp libmatrixp.lib (Windows)
mbuild matrixdriver.cpp -L. -lmatrixp -I. (UNIX)

Note This command assumes that the shared library and the corresponding
header file are in the current working directory.

On Windows, if this is not the case, specify the full path to libmatrixp.lib,
and use a -I option to specify the directory containing the header file.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

Incorporating a C++ Shared Library into an Application
To incorporate a C++ shared library into your application, you will, in general,
follow the steps in “Using a Shared Library” on page 8-16. There are two main
differences to note when using a C++ shared library:

• Interface functions use the mwArray type to pass arguments, rather than
the mxArray type used with C shared libraries.

8-21

http://www.mathworks.com/support/solutions/

8 Libraries

• C++ exceptions are used to report errors to the caller. Therefore, all calls
must be wrapped in a try-catch block.

Exported Function Signature
The C++ shared library target generates two sets of interfaces for each
MATLAB function. The first set of exported interfaces is identical to the
mlx signatures that are generated in C shared libraries. The second set
of interfaces is the C++ function interfaces. The generic signature of the
exported C++ functions is as follows:

MATLAB Functions with No Return Values.

bool MW_CALL_CONV <function-name>(<list_of_input_variables>);

MATLAB Functions with at Least One Return Value.

bool MW_CALL_CONV <function-name>(int <number_of_return_values>,
<list_of_return_variables>, <list_of_input_variables>);

In this case, <list_of_input_variables> represents a comma-separated
list of type const mwArray& and <list_of_return_variables> represents
a comma-separated list of type mwArray&. For example, in the libmatrix
library, the C++ interfaces to the addmatrix MATLAB function is generated
as:

void addmatrix(int nargout, mwArray& a , const mwArray& a1,
const mwArray& a2);

Error Handling
C++ interface functions handle errors during execution by throwing a C++
exception. Use the mwException class for this purpose. Your application can
catch mwExceptions and query the what() method to get the error message.
To correctly handle errors when calling the C++ interface functions, wrap
each call inside a try-catch block.

try
{

...
(call function)

8-22

Integrate C++ Shared Libraries

...
}
catch (const mwException& e)
{

...
(handle error)
...

}

The matrixdriver.cpp application illustrates the typical way to handle
errors when calling the C++ interface functions.

Using C/C++ Shared Libraries on a Mac OS X System
To use a MATLAB Compiler generated library on a Mac OS X system, a
separate thread needs to be created.

The initialization of the shared library and subsequent calls to that library’s
functions is performed by this thread. The function mclRunMain, provided by
MATLAB Compiler, takes care of the thread creation process.

The main thread of the application is the thread that calls your driver
program’s main() function. The body of your main() function should call
the mclRunMain function, passing to it the address of another function. This
function should contain the library initialization routines and necessary calls
to the shared library generated by MATLAB Compiler.

The matrixdriver.c example illustrates this procedure. This example
rewrites the C shared library example from this chapter for use on Mac OS
X. Follow the same procedure as in “C Shared Library Example” on page
8-4 to build and run this application.

The Mac version of the matrixdriver application differs from the version
on other platforms. The run_main() function performs the basic tasks of
initialization, calling the library’s functions, and termination. Compare this
function with the matrixdriver main() function on other platforms, listed in
the earlier example.

8-23

8 Libraries

Working with C++ Shared Libraries and Sparse Arrays
The MATLAB Compiler API includes static factory methods for working with
sparse arrays.

For a complete list of the methods, see “Static Factory Methods for Sparse
Arrays” on page D-33.

8-24

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Call MATLAB Compiler API Functions (mcl*) from C/C++
Code

In this section...

“Functions in the Shared Library” on page 8-25

“Type of Application” on page 8-25

“Structure of Programs That Call Shared Libraries” on page 8-27

“Library Initialization and Termination Functions” on page 8-28

“Print and Error Handling Functions” on page 8-29

“Functions Generated from MATLAB Files” on page 8-31

“Retrieving MCR State Information While Using Shared Libraries” on page
8-36

Functions in the Shared Library
A shared library generated by MATLAB Compiler contains at least seven
functions. There are three generated functions to manage library initialization
and termination, one each for printed output and error messages, and two
generated functions for each MATLAB file compiled into the library.

To generate the functions described in this section, first copy
sierpinski.m, main_for_lib.c, main_for_lib.h, and triangle.c from
matlabroot/extern/examples/compiler into your directory, and then
execute the appropriate MATLAB Compiler command.

Type of Application

For a C Application on Windows

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c libtriangle.lib

8-25

8 Libraries

For a C Application on UNIX

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c -L. -ltriangle -I.

For a C++ Application on Windows

mcc -W cpplib:libtrianglep -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c libtrianglep.lib

For a C++ Application on UNIX

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c -L. -ltriangle -I.

These commands create a main program named triangle, and a shared
library named libtriangle. The library exports a single function that uses
a simple iterative algorithm (contained in sierpinski.m) to generate the
fractal known as Sierpinski’s Triangle. The main program in triangle.c
or triangle.cpp can optionally take a single numeric argument, which, if
present, specifies the number of points used to generate the fractal. For
example, triangle 8000 generates a diagram with 8,000 points.

8-26

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

In this example, MATLAB Compiler places all of the generated functions into
the generated file libtriangle.c or libtriangle.cpp.

Structure of Programs That Call Shared Libraries
All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

8-27

8 Libraries

5 Call, once for each library, <libraryname>Terminate, to destroy the
associated MCR.

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this
example, triangle.c.

Library Initialization and Termination Functions
The library initialization and termination functions create and destroy,
respectively, the MCR instance required by the shared library. You must call
the initialization function before you invoke any of the other functions in the
shared library, and you should call the termination function after you are
finished making calls into the shared library (or you risk leaking memory).

There are two forms of the initialization function and one type of termination
function. The simpler of the two initialization functions takes no arguments;
most likely this is the version your application will call. In this example, this
form of the initialization function is called libtriangleInitialize.

bool libtriangleInitialize(void)

This function creates an MCR instance using the default print and error
handlers, and other information generated during the compilation process.

However, if you want more control over how printed output and error
messages are handled, you may call the second form of the function, which
takes two arguments.

bool libtriangleInitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler

)

By calling this function, you can provide your own versions of the print
and error handling routines called by the MCR. Each of these routines has
the same signature (for complete details, see “Print and Error Handling

8-28

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Functions” on page 8-29). By overriding the defaults, you can control how
output is displayed and, for example, whether or not it goes into a log file.

Note Before calling either form of the library initialization routine, you must
first call mclInitializeApplication to set up the global MCR state. See
“Calling a Shared Library” on page 8-13 for more information.

On Microsoft Windows platforms, MATLAB Compiler generates an additional
initialization function, the standard Microsoft DLL initialization function
DllMain.

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
void *pv)

The generated DllMain performs a very important service; it locates the
directory in which the shared library is stored on disk. This information is
used to find the CTF archive, without which the application will not run.
If you modify the generated DllMain (not recommended), make sure you
preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling
mclTerminateApplication.

Print and Error Handling Functions
By default, MATLAB Compiler generated applications and shared libraries
send printed output to standard output and error messages to standard error.
MATLAB Compiler generates a default print handler and a default error
handler that implement this policy. If you’d like to change this behavior,
you must write your own error and print handlers and pass them in to the
appropriate generated initialization function.

You may replace either, both, or neither of these two functions. The MCR
sends all regular output through the print handler and all error output

8-29

8 Libraries

through the error handler. Therefore, if you redefine either of these functions,
the MCR will use your version of the function for all the output that falls into
class for which it invokes that handler.

The default print handler takes the following form.

static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard
output, and returns the number of characters printed. If you override or
replace this function, your version must also take a string and return the
number of characters “handled.” The MCR calls the print handler when an
executing MATLAB file makes a request for printed output, e.g., via the
MATLAB function disp. The print handler does not terminate the output
with a carriage return or line feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different.
It sends the output to the standard error output stream, but if the string does
not end with carriage return, the error handler adds one. If you replace the
default error handler with one of your own, you should perform this check as
well, or some of the error messages printed by the MCR will not be properly
formatted.

Caution The error handler, despite its name, does not handle the actual
errors, but rather the message produced after the errors have been caught
and handled inside the MCR. You cannot use this function to modify the error
handling behavior of the MCR -- use the try and catch statements in your
MATLAB files if you want to control how a MATLAB Compiler generated
application responds to an error condition.

8-30

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Note If you provide alternate C++ implementations of either
mclDefaultPrintHandler or mclDefaultErrorHandler, then functions must
be declared extern "C". For example:

extern "C" int myPrintHandler(const char *s);

Functions Generated from MATLAB Files
For each MATLAB file specified on the MATLAB Compiler command line, the
product generates two functions, the mlx function and the mlf function. Each
of these generated functions performs the same action (calls your MATLAB
file function). The two functions have different names and present different
interfaces. The name of each function is based on the name of the first
function in the MATLAB file (sierpinski, in this example); each function
begins with a different three-letter prefix.

Note For C shared libraries, MATLAB Compiler generates the mlx and
mlf functions as described in this section. For C++ shared libraries, the
product generates the mlx function the same way it does for the C shared
library. However, the product generates a modified mlf function with these
differences:

• The mlf before the function name is dropped to keep compatibility with R13.

• The arguments to the function are mwArray instead of mxArray.

mlx Interface Function
The function that begins with the prefix mlx takes the same type and number
of arguments as a MATLAB MEX-function. (See the External Interfaces
documentation for more details on MEX-functions.) The first argument, nlhs,
is the number of output arguments, and the second argument, plhs, is a
pointer to an array that the function will fill with the requested number of
return values. (The “lhs” in these argument names is short for “left-hand
side” -- the output variables in a MATLAB expression are those on the

8-31

8 Libraries

left-hand side of the assignment operator.) The third and fourth parameters
are the number of inputs and an array containing the input variables.

void mlxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[])

mlf Interface Function
The second of the generated functions begins with the prefix mlf. This
function expects its input and output arguments to be passed in as individual
variables rather than packed into arrays. If the function is capable of
producing one or more outputs, the first argument is the number of outputs
requested by the caller.

void mlfSierpinski(int nargout, mxArray** x, mxArray** y,
mxArray* iterations, mxArray* draw)

In both cases, the generated functions allocate memory for their return
values. If you do not delete this memory (via mxDestroyArray) when you are
done with the output variables, your program will leak memory.

Your program may call whichever of these functions is more convenient, as
they both invoke your MATLAB file function in an identical fashion. Most
programs will likely call the mlf form of the function to avoid managing the
extra arrays required by the mlx form. The example program in triangle.c
calls mlfSierpinski.

mlfSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, x and y, and provides
two inputs, iterations and draw.

If the output variables you pass in to an mlf function are not NULL, the mlf
function will attempt to free them using mxDestroyArray. This means that
you can reuse output variables in consecutive calls to mlf functions without
worrying about memory leaks. It also implies that you must pass either NULL
or a valid MATLAB array for all output variables or your program will fail
because the memory manager cannot distinguish between a non-initialized
(invalid) array pointer and a valid array. It will try to free a pointer that is
not NULL -- freeing an invalid pointer usually causes a segmentation fault
or similar fatal error.

8-32

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Using varargin and varargout in a MATLAB Function Interface
If your MATLAB function interface uses varargin or varargout, you must
pass them as cell arrays. For example, if you have N varargins, you need
to create one cell array of size 1-by-N. Similarly, varargouts are returned
back as one cell array. The length of the varargout is equal to the number
of return values specified in the function call minus the number of actual
variables passed. As in the MATLAB software, the cell array representing
varagout has to be the last return variable (the variable preceding the first
input variable) and the cell array representing varargins has to be the last
formal parameter to the function call.

For information on creating cell arrays, refer to the C MEX function interface
in the External Interfaces documentation.

For example, consider this MATLAB file interface:

[a,b,varargout] = myfun(x,y,z,varargin)

The corresponding C interface for this is

void mlfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
mxArray **varargout, mxArray *x, mxArray *y,
mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars
- 2), where 2 represents the two variables, a and b, being returned. Both
varargin and varargout are single row, multiple column cell arrays.

8-33

8 Libraries

Caution The C++ shared library interface does not support varargin with
zero (0) input arguments. Calling your program using an empty mwArray
results in the compiled library receiving an empty array with nargin =
1. The C shared library interface allows you to call mlfFOO(NULL) (the
compiled MATLAB code interprets this as nargin=0). However, calling
FOO((mwArray)NULL) with the C++ shared library interface causes the
compiled MATLAB code to see an empty array as the first input and
interprets nargin=1.

For example, compile some MATLAB code as a C++ shared library using
varargin as the MATLAB function’s list of input arguments. Have the
MATLAB code display the variable nargin. Call the library with function
FOO() and it won’t compile, producing this error message:

... 'FOO' : function does not take 0 arguments

Call the library as:

mwArray junk;
FOO(junk);

or

FOO((mwArray)NULL);

At runtime, nargin=1. In MATLAB, FOO() is nargin=0 and FOO([]) is
nargin=1.

C++ Interfaces for MATLAB Functions Using varargin and varargout.
The C++ mlx interface for MATLAB functions does not change even if the
functions use varargin or varargout. However, the C++ function interface
(the second set of functions) changes if the MATLAB function is using
varargin or varargout.

For examples, view the generated code for various MATLAB function
signatures that use varargin or varargout.

8-34

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Note For simplicity, only the relevant part of the generated C++ function
signature is shown in the following examples.

function varargout = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

No input no output:
void foo()

Only inputs:
void foo(const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& varargout)

Most generic form that has both inputs and outputs:
void foo(int nargout, mwArray& varargout,

const mwArray& varargin)

function varargout = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

Most generic form that has outputs and all the inputs
void foo(int nargout, mwArray& varargout, const

mwArray& i1, const
mwArray& i2, const
mwArray& varargin)

Only inputs:
void foo(const mwArray& i1,

const mwArray& i2, const mwArray& varargin)

8-35

8 Libraries

function [o1, o2, varargout] = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

Most generic form that has all the outputs and inputs
void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout,
const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout)

function [o1, o2, varargout] = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded function is
generated:

Most generic form that has all the outputs and
all the inputs

void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout,
const mwArray& i1, const mwArray& i2,

const mwArray& varargin)

Retrieving MCR State Information While Using
Shared Libraries
When using shared libraries (note this does not apply to standalone
applications), you may call functions to retrieve specific information from
MCR state. For details, see “Retrieving MCR Attributes” on page 5-30.

8-36

About Memory Management and Cleanup

About Memory Management and Cleanup

In this section...

“Overview” on page 8-37

“Passing mxArrays to Shared Libraries” on page 8-37

Overview
Generated C++ code provides consistent garbage collection via the object
destructors and the MCR’s internal memory manager optimizes to avoid
heap fragmentation.

If memory constraints are still present on your system, try preallocating
arrays in MATLAB. This will reduce the number of calls to the memory
manager, and the degree to which the heap fragments.

Passing mxArrays to Shared Libraries
When an mxArray is created in an application which uses the MCR, it is
created in the managed memory space of the MCR.

Therefore, it is very important that you never create mxArrays (or call any
other MathWorks function) before calling mclInitializeApplication.

It is safe to call mxDestroyArray when you no longer need a particular
mxArray in your code, even when the input has been assigned to a persistent
or global variable in MATLAB. MATLAB uses reference counting to ensure
that when mxDestroyArray is called, if another reference to the underlying
data still exists, the memory will not be freed. Even if the underlying memory
is not freed, the mxArray passed to mxDestroyArray will no longer be valid.

For more information about mclInitializeApplication and
mclTerminateApplication, see “Calling a Shared Library” on page 8-13.

For more information about mxArray, see “Use the mxArray API to Work
with MATLAB Types” on page 6-19.

8-37

8 Libraries

8-38

9

Troubleshooting

• “Introduction” on page 9-2

• “Common Issues” on page 9-4

• “Failure Points and Possible Solutions” on page 9-5

• “Troubleshooting mbuild” on page 9-15

• “MATLAB® Compiler™” on page 9-17

• “Deployed Applications” on page 9-21

9 Troubleshooting

Introduction
MATLAB Compiler software converts your MATLAB programs into
self-contained applications and software components and enables you to
share them with end users who do not have MATLAB installed. MATLAB
Compiler takes MATLAB applications (MATLAB files, MEX-files, and other
MATLAB executable code) as input and generates redistributable standalone
applications or shared libraries. The resulting applications and components
are platform specific.

Another use of MATLAB Compiler is to build C or C++ shared libraries
(DLLs on Windows) from a set of MATLAB files. You can then write C or
C++ programs that can call the functions in these libraries. The typical
workflow for building a shared library is to compile your MATLAB code on a
development machine, write a C/C++ driver application, build an executable
from the driver code, test the resulting executable on that machine, and deploy
the executable and MCR to a test or customer machine without MATLAB.

Compiling a shared library is very similar to compiling an executable. The
command line differs as shown:

mcc -B csharedlib:hellolib hello.m

or

mcc -B cpplib:hellolib hello.m

Once you have compiled a shared library, the next step is to create a driver
application that initializes and terminates the shared library as well as
invokes method calls. This driver application can be compiled and linked with
your shared library with the mbuild command. For example:

mbuild helloapp.c hellolib.lib

or

mbuild helloapp.cpp hellolib.lib

The only header file that needs to be included in your driver application is
the one generated by your mcc command (hellolib.h in the above example).
See “Integrate C Shared Libraries” on page 8-4 and “Integrate C++ Shared

9-2

Introduction

Libraries” on page 8-18 for examples of how to correctly access a shared
library.

9-3

9 Troubleshooting

Common Issues
Some of the most common issues encountered when using MATLAB Compiler
generated standalone executables or shared libraries are:

• Compilation fails with an error message. This can indicate a failure
during any one of the internal steps involved in producing the final output.

• Compilation succeeds but the application does not execute because
required DLLs are not found. All shared libraries required for your
standalone executable or shared library are contained in the MATLAB
Compiler Runtime (MCR). Installing the MCR is required for any of the
deployment targets.

• Compilation succeeds, and the resultant file starts to execute but
then produces errors and/or generates a crash dump.

• The compiled program executes on the machine where it was
compiled but not on other machines.

• The compiled program executes on some machines and not others.

If any of these issues apply to you, search “Failure Points and Possible
Solutions” on page 9-5 for common solutions.

9-4

Failure Points and Possible Solutions

Failure Points and Possible Solutions

In this section...

“How to Use this Section” on page 9-5

“Does the Failure Occur During Compilation?” on page 9-5

“Does the Failure Occur When Testing Your Application?” on page 9-10

“Does the Failure Occur When Deploying the Application to End Users?”
on page 9-13

How to Use this Section
Use the following list of questions to diagnose some of the more common
issues associated with using MATLAB Compiler software.

Does the Failure Occur During Compilation?
You typically compile your MATLAB code on a development machine, test
the resulting executable on that machine, and deploy the executable and
MATLAB Compiler Runtime (MCR) to a test or customer machine without
MATLAB. The compilation process performs dependency analysis on your
MATLAB code, creates an encrypted archive of your code and required
toolbox code, generates wrapper code, and compiles the wrapper code into an
executable. If your application fails to build an executable, the following
questions may help you isolate the problem.

Is your selected compiler supported by MATLAB Compiler?

See the current list of supported compilers at
http://www.mathworks.com/support/compilers/current_release/.

Are error messages produced at compile time?

See error messages in “MATLAB® Compiler™” on page 9-17.

9-5

http://www.mathworks.com/support/compilers/current_release/

9 Troubleshooting

Did you compile with the verbose flag?

Compilation can fail in MATLAB because of errors encountered by the system
compiler when the generated wrapper code is compiled into an executable.
Additional errors and warnings are printed when you use the verbose flag
as such:

mcc -mv myApplication.m

In this example, -m tells MATLAB Compiler to create a standalone application
and -v tells MATLAB Compiler and other processors to display messages
about the process.

Are you compiling within or outside of MATLAB?

mcc can be invoked from the operating system command line or from the
MATLAB prompt. When you run mcc inside the MATLAB environment,
MATLAB will modify environment variables in its environment as necessary
so mcc will run. Issues with PATH, LD_LIBRARY_PATH, or other environment
variables seen at the operating system command line are often not seen at the
MATLAB prompt. The environment that MATLAB uses for mcc can be listed
at the MATLAB prompt. For example:

>>!set

lists the environment on Windows platforms.

>>!printenv

lists the environment on UNIX platforms. Using this path allows you to use
mcc from the operating system command line.

Does a simple read/write application such as “Hello World” compile
successfully?

Sometimes applications won’t compile because of MEX-file issues, other
toolboxes, or other dependencies. Compiling a helloworld application can
determine if MATLAB Compiler is correctly set up to produce any executable.
For example, try compiling:

function helloworld

9-6

Failure Points and Possible Solutions

disp('hello world')

with:

>>mcc -mv helloworld.m

Have you tried to compile any of the examples in MATLAB Compiler
help?

The source code for all examples is provided with MATLAB Compiler and is
located in matlabroot\extern\examples\compiler, where matlabroot is
the root folder of your MATLAB installation.

Does your code compile with the LCC compiler?

The LCC compiler is a free compiler provided with MATLAB on Windows. If
there are installation or path problems with other system compilers, you may
be able to compile your application with LCC.

Did the MATLAB code compile successfully before this failure?

The three most common reasons for MATLAB code to stop compiling are:

• Upgrading to MATLAB without running mbuild -setup — Running
mbuild -setup is required after any upgrade to MATLAB Compiler.

• A change in the selection of the system compiler — It is possible to
inadvertently change the system compiler for versions of MATLAB that
store preferences in a common folder. For example, MATLAB 7.0.1
(R14SP1) and MATLAB 7.0.4 (R14SP2) store their preferences in the same
folder. Changing the system compiler in R14SP1 will also change the
system compiler in R14SP2.

• An upgrade to MATLAB that didn’t include an upgrade to MATLAB
Compiler — The versions of MATLAB Compiler and MATLAB must be the
same in order to work together. It is possible to see conflicts in installations
where the MATLAB installation is local and the MATLAB Compiler
installation is on a network or vice versa.

9-7

9 Troubleshooting

Are you receiving errors when trying to compile a standalone
executable?

If you are not receiving error messages to help you debug your standalone,
write an application to display the warnings or error messages (a console
application).

Are you receiving errors when trying to compile a shared library?

Errors at compile time can indicate issues with either mcc or mbuild. For
troubleshooting mcc issues, see the previous section on compile time issues. It
is recommended that your driver application be compiled and linked using
mbuild. mbuild can be executed with the -v switch to provide additional
information on the compilation process. If you receive errors at this stage,
ensure that you are using the correct header files and/or libraries produced by
mcc, in your C or C++ driver. For example:

mcc -B csharedlib:hellolib hello.m

produces hellolib.h, which is required to be included in your C/C++
driver, and hellolib.lib or hellolib.so, which is required on the mbuild
command line.

Is your MATLAB object failing to load?

If your MATLAB object fails to load, it is typically a result of the MCR not
finding required class definitions.

When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

Using the %#function pragma in this manner forces depfun to load needed
class definitions, enabling the MCR to successfully load the object.

If you are compiling a driver application, are you using mbuild?

MathWorks recommends and supports using mbuild to compile your
driver application. mbuild is designed and tested to correctly build driver

9-8

Failure Points and Possible Solutions

applications. It will ensure that all MATLAB header files are found by the
C/C++ compiler, and that all necessary libraries are specified and found by
the linker.

Are you trying to compile your driver application using Microsoft
Visual Studio or another IDE?

If using an IDE, in addition to linking to the generated export library,
you need to include an additional dependency to mclmcrrt.lib.
This library is provided for all supported third-party compilers in
matlabroot\extern\lib\vendor-name.

Are you importing the correct versions of import libraries?

If you have multiple versions of MATLAB installed on your machine, it is
possible that an older or incompatible version of the library is referenced.
Ensure that the only MATLAB library that you are linking to is mclmcrrt.lib
and that it is referenced from the appropriate vendor folder. Do not reference
libraries as libmx or libut. In addition, verify that your library path
references the version of MATLAB that your shared library was built with.

Are you able to compile the matrixdriver example?

Typically, if you cannot compile the examples in the documentation, it
indicates an issue with the installation of MATLAB or your system compiler.
See “Integrate C Shared Libraries” on page 8-4 and “Integrate C++ Shared
Libraries” on page 8-18 for these examples.

Do you get the MATLAB:I18n:InconsistentLocale Warning?

The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

9-9

9 Troubleshooting

Does the Failure Occur When Testing Your
Application?
After you have successfully compiled your application, the next step is to test
it on a development machine and deploy it on a target machine. Typically the
target machine does not have a MATLAB installation and requires that the
MATLAB Compiler Runtime (MCR) be installed. A distribution includes all
of the files that are required by your application to run, which include the
executable, CTF archive and the MCR.

See “Deploying to Developers” on page 5-3 and “Deploying to End Users”
on page 5-9 for information on distribution contents for specific application
types and platforms.

Test the application on the development machine by running the application
against the MCR shipped with MATLAB Compiler. This will verify that
library dependencies are correct, that the CTF archive can be extracted
and that all MATLAB code, MEX—files and support files required by the
application have been included in the archive. If you encounter errors testing
your application, the questions in the column to the right may help you isolate
the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application’s execution by
issuing !application-name at the MATLAB prompt. If your application
executes within MATLAB but not from outside, this can indicate an issue
with the system PATH variable. For more information, see .

Does the application begin execution and result in MATLAB or other
errors?

Ensure that you included all necessary files when compiling your application
(see the readme.txt file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically
included by MATLAB Compiler; however, functions that are not explicitly
called, for example through EVAL, need to be included at compilation using
the -a switch of the mcc command. Also, any support files like .mat, .txt,
or .html files need to be added to the archive with the -a switch. There is a

9-10

Failure Points and Possible Solutions

limitation on the functionality of MATLAB and associated toolboxes that can
be compiled. Check the documentation to see that the functions used in your
application’s MATLAB files are valid. Check the file mccExcludedFiles.log
on the development machine. This file lists all functions called from your
application that cannot be compiled.

Does the application emit a warning like "MATLAB file may be
corrupt"?

See the listing for this error message in “MATLAB® Compiler™” on page
9-17 for possible solutions.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an
environment where multiple versions of MATLAB are installed. Some older
versions of MATLAB may not be fully compatible with this architecture.

On Windows, ensure that the matlabroot/runtime/win32|win64 of
the version of MATLAB in which you are compiling appears ahead of
matlabroot/runtime/win32|win64 of other versions of MATLAB installed on
the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH
on Linux) match. Do this by comparing the outputs of !printenv at the
MATLAB prompt and printenv at the shell prompt. Using this path allows
you to use mcc from the operating system command line.

If you are testing a standalone executable or shared library and
driver application, did you install the MCR?

All shared libraries required for your standalone executable or shared library
are contained in the MATLAB Compiler Runtime (MCR). Installing the MCR
is required for any of the deployment targets.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the
MCR. It is also possible that the MCR is installed correctly, but that the

9-11

9 Troubleshooting

PATH,LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 5-17.

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The run-time system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

Are you receiving errors when trying to run the shared library
application?

Calling MATLAB Compiler generated shared libraries requires correct
initialization and termination in addition to library calls themselves. For
information on calling shared libraries, see “Call MATLAB® Compiler™ API
Functions (mcl*) from C/C++ Code” on page 8-25.

Some key points to consider to avoid errors at run time:

• Ensure that the calls to mclinitializeApplication and
libnameInitialize are successful. The first function enables construction
of MCR instances. The second creates the MCR instance required by the
library named libname. If these calls are not successful, your application
will not execute.

• Do not use any mw- or mx-functions before calling
mclinitializeApplication. This includes static and global variables that
are initialized at program start. Referencing mw- or mx-functions before
initialization results in undefined behavior.

• Do not re-initialize (call mclinitializeApplication) after terminating
it with mclTerminateApplication. The mclinitializeApplication
andlibnameInitialize functions should be called only once.

• Ensure that you do not have any library calls after
mclTerminateApplication.

• Ensure that you are using the correct syntax to call the library and its
functions.

9-12

Failure Points and Possible Solutions

Does the Failure Occur When Deploying the
Application to End Users?
After the application is working on the test machine, failures can be isolated
in end-user deployment. The end users of your application need to install the
MATLAB Compiler Runtime (MCR) on their machines. The MCR includes a
set of shared libraries that provides support for all features of MATLAB. If
your application fails during end-user deployment, the following questions in
the column to the right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy
to end users, after running successfully in a test environment. For a detailed
list of guidelines for writing MATLAB code that can be consumed by end
users, see “Write Deployable MATLAB Code” on page 3-12

Is the MCR installed?

All shared libraries required for your standalone executable or shared library
are contained in the MCR. Installing the MCR is required for any of the
deployment targets. See“Working with the MCR” on page 5-17 for complete
information.

If running on UNIX or Mac, did you update the dynamic library path
after installing the MCR?

For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 5-17.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the MCR.
It is also possible that the MCR is installed correctly, but that the PATH,
LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 5-17.

9-13

9 Troubleshooting

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The run-time system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

Do you have write access to the directory the application is installed
in?

The first operation attempted by a compiled application is extraction of the
CTF archive. If the archive is not extracted, the application cannot access the
compiled MATLAB code and the application fails. If the application has write
access to the installation folder, a subfolder named application-name_mcr is
created the first time the application is run. After this subfolder is created,
the application no longer needs write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable
needs to be redeployed, since it also contains the embedded CTF file.
The CTF file is keyed to a specific compilation session. Every time an
application is recompiled, a new, matched CTF file is created. As above,
write access is required to expand the new CTF file. Deleting the existing
application-name_mcr folder and running the new executable will verify
that the application can expand the new CTF file.

9-14

Troubleshooting mbuild

Troubleshooting mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create standalone applications.

Options File Not Writable. When you run mbuild -setup, mbuild makes a
copy of the appropriate options file and writes some information to it. If the
options file is not writable, you are asked if you want to overwrite the existing
options file. If you choose to do so, the existing options file is copied to a new
location and a new options file is created.

Directory or File Not Writeable. If a destination folder or file is not
writable, ensure that the permissions are properly set. In certain cases, make
sure that the file is not in use.

mbuild Generates Errors. If you run mbuild filename and get errors, it
may be because you are not using the proper options file. Run mbuild -setup
to ensure proper compiler and linker settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such
as unrecognized command or file not found, make sure the command-line
tools are installed and the path and other environment variables are set
correctly in the options file. For Microsoft Visual Studio®, for example, make
sure to run vcvars32.bat (MSVC 6.x and earlier) or vsvars32.bat (MSVC
8.x and later).

mbuild Not a Recognized Command. If mbuild is not recognized, verify
that matlabroot\bin is in your path. On UNIX, it may be necessary to
rehash.

mbuild Works from the Shell But Not from MATLAB (UNIX). If the
command

mcc -m hello

works from the UNIX command prompt but not from the MATLAB prompt,
you may have a problem with your .cshrc file. When MATLAB launches a
new C shell to perform compilations, it executes the .cshrc script. If this
script causes unexpected changes to the PATH environment variable, an error

9-15

9 Troubleshooting

may occur. You can test this before starting MATLAB by performing the
following:

setenv SHELL /bin/sh

If this works correctly, then you should check your .cshrc file for problems
setting the PATH environment variable.

Cannot Locate Your Compiler (Windows). If mbuild has difficulty
locating your installed compilers, it is useful to know how it finds compilers.
mbuild automatically detects your installed compilers by first searching for
locations specified in the following environment variables:

• MSVCDIR for Microsoft Visual C++, Version 6.0 or 8.0

Next, mbuild searches the Windows registry for compiler entries.

Internal Error when Using mbuild -setup (Windows). Some antivirus
software packages may conflict with the mbuild -setup process. If you get an
error message during mbuild -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses
your difficulty with mbuild, contact Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

9-16

http://www.mathworks.com/contact_TS.html

MATLAB® Compiler™

MATLAB Compiler
Typically, problems that occur when building standalone applications involve
mbuild. However, it is possible that you may run into some difficulty with
MATLAB Compiler. A good source for additional troubleshooting information
for the product is the MATLAB Compiler Product Support page at the
MathWorks Web site.

libmwlapack: load error: stgsy2_. This error occurs when a customer
has both the R13 and the R14 version of MATLAB or MCR/MGL specified
in the folder path and the R14 version fails to load because of a lapack
incompatibility.

Licensing Problem. If you do not have a valid license for MATLAB Compiler
, you will get an error message similar to the following when you try to access
MATLAB Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact MathWorks. A list of contacts at
MathWorks is provided at the beginning of this document.

loadlibrary usage (MATLAB loadlibrary command). The following
are common error messages encountered when attempting to compile the
MATLAB loadlibrary function or run an application that uses the MATLAB
loadlibrary function with MATLAB Compiler:

• Output argument ’notfound’ was not assigned during call to ’loadlibrary’.

•

Warning: Function call testloadlibcompile
invokes inexact match
d:\work\testLoadLibCompile_mcr\
testLoadLibCompile\testLoadLibCompile.m.

??? Error using ==> loadlibrary
Call to Perl failed. Possible error processing header file.
Output of Perl command:
Error using ==> perl

9-17

http://www.mathworks.com/support/product/product.html?product=CO

9 Troubleshooting

All input arguments must be valid strings.

Error in ==> testLoadLibCompile at 4

•

MATLAB:loadlibrary:cannotgeneratemfile
There was an error running the loader mfile.
Use the mfilename option
to produce a file that you can debug and fix.
Please report this
error to the MathWorks so we can improve this
function.
??? Error using ==> feval
Undefined function or variable 'GHlinkTest_proto'.

Error in ==> loadtest at 6

For information about how to properly invoke the MATLAB loadlibrary
function with MATLAB Compiler, see “Load MATLAB Libraries using
loadlibrary” on page 3-19 in the Deploying MATLAB Code section in your
product user’s guide.

MATLAB Compiler Does Not Generate the Application. If you experience
other problems with MATLAB Compiler, contact Technical Support at
MathWorks at http://www.mathworks.com/contact_TS.html.

"MATLAB file may be corrupt" Message Appears. If you receive the
message

This MATLAB file does not have proper version information and
may be corrupt. Please delete the extraction directory and
rerun the application.

when you run your standalone application that was generated by MATLAB
Compiler, you should check the following:

• Do you have a startup.m file that calls addpath? If so, this will cause
run-time errors. As a workaround, use isdeployed to have the addpath
command execute only from MATLAB. For example, use a construct such
as:

9-18

http://www.mathworks.com/contact_TS.html

MATLAB® Compiler™

if ~isdeployed
addpath(path);

end

• Verify that the .ctf archive file self extracted and that you have write
permission to the folder.

• Verify that none of the files in the <application name>_mcr folder have
been modified or removed. Modifying this folder is not supported, and
if you have modified it, you should delete it and redeploy or restart the
application.

• If none of the above possible causes apply, then the error is likely caused
by a corruption. Delete the <application name>_mcr folder and run the
application.

Missing Functions in Callbacks. If your application includes a call to a
function in a callback string or in a string passed as an argument to the feval
function or an ODE solver, and this is the only place in your MATLAB file this
function is called, MATLAB Compiler will not compile the function. MATLAB
Compiler does not look in these text strings for the names of functions to
compile. See “Fixing Callback Problems: Missing Functions” on page 10-3
for more information.

"MCRInstance not available" Message Appears. If you receive the
message MCRInstance not available when you try to run a standalone
application that was generated with MATLAB Compiler, it can be that the
MCR is not located properly on your path or the CTF file is not in the proper
folder (if you extracted it from your binary).
The UNIX verification process is the same, except you use the appropriate
UNIX path information.

To verify that the MCR is properly located on your path, from a development
Windows machine, confirm that matlabroot\runtime\win32|win64, where
matlabroot is your root MATLAB folder, appears on your system path ahead
of any other MATLAB installations.

From a Windows target machine, verify that
<mcr_root>\<ver>\runtime\win32|win64, where <mcr_root> is your root
MCR folder, appears on your system path. To verify that the CTF file that
MATLAB Compiler generated in the build process resides in the same folder

9-19

9 Troubleshooting

as your program’s file, look at the folder containing the program’s file and
make sure the corresponding .ctf file is also there.

Warning C:\WORK\R2008B~1\LCC\foo_delay_load.c: 21 static ‘void
function(void) FailedToLoadMCR’ is not referenced. This warning
message is produced as indirect output from of an internal delay load job that
is only seen by Microsoft Visual C++ compiler users. The message is benign
and should be ignored.

warning LNK4248: unresolved typeref token (01000028) for
’mxArray_tag’; image may not run test3.obj. If you receive this
message while compiling an MSVC application that calls a MATLAB
Compiler generated shared library, you can safely ignore it. The message is
due to changes in the Visual C++ 2005 compiler and will not interfere with
successful running of your application. If you desire, you can suppress the
message by including an empty definition for mxArray_tag inside your .cpp
file (test3.cpp, in this case). For example, if you add the line

struct mxArray_tag {};

at the beginning of your code and after the include statements, the warning
will not recur.

No Info.plist file in application bundle or no... . On 64-bit Macintosh,
indicates the application is not being executed through the bundle.

9-20

Deployed Applications

Deployed Applications
Failed to decrypt file. The MATLAB file
"<ctf_root>\toolbox\compiler\deploy\matlabrc.m" cannot be
executed. The application is trying to use a CTF archive that does not
belong to it. Applications and CTF archives are tied together at compilation
time by a unique cryptographic key, which is recorded in both the application
and the CTF archive. The keys must match at run time. If they don’t match,
you will get this error.

To work around this, delete the *_mcr folder corresponding to the CTF archive
and then rerun the application. If the same failure occurs, you will likely
need to recompile the application using MATLAB Compiler and copy both the
application binary and the CTF archive into the installation folder.

This application has requested the run time to terminate in an
unusual way. This indicates a segmentation fault or other fatal error. There
are too many possible causes for this message to list them all.

To try to resolve this problem, run the application in the debugger and try to
get a stack trace or locate the line on which the error occurs. Fix the offending
code, or, if the error occurs in a MathWorks library or generated code, contact
MathWorks technical support.

Checking access to X display <IP-address>:0.0 . . .
If no response hit ^C and fix host or access control to host.
Otherwise, checkout any error messages that follow and fix . . .
Successful. This message can be ignored.

9-21

9 Troubleshooting

??? Error: File: /home/username/<MATLAB file_name>
Line: 1651 Column: 8
Arguments to IMPORT must either end with ".*"
or else specify a fully qualified class name:
"<class_name>" fails this test. The import statement is referencing a
Java class (<class_name>) that MATLAB Compiler (if the error occurs at
compile time) or the MCR (if the error occurs at run time) cannot find.

To work around this, ensure that the JAR file that contains
the Java class is stored in a folder that is on the Java class
path. (See matlabroot/toolbox/local/classpath.txt for
the class path.) If the error occurs at run time, the classpath
is stored in matlabroot/toolbox/local/classpath.txt
when running on the development machine. It is stored in
<mcr_root>/toolbox/local/classpath.txt when running on a target
machine.

Warning: Unable to find Java library:
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client\jvm.dll
Warning: Disabling Java support. This warning indicates that a
compiled application can not find the Java virtual machine, and therefore, the
compiled application cannot run any Java code. This will affect your ability to
display graphics.

To resolve this, ensure that jvm.dll is in the
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client folder
and that this folder is on your system path.

Warning: matlabroot\toolbox\local\pathdef.m not found.
Toolbox Path Cache is not being used. Type ’help toolbox_path_cache’
for more info. The pathdef.m file defines the MATLAB startup path.
MATLAB Compiler does not include this file in the generated CTF archive
because the MCR path is a subset of the full MATLAB path.
This message can be ignored.

Undefined function or variable ’matlabrc’. When MATLAB or the MCR
starts, they attempt to execute the MATLAB file matlabrc.m. This message
means that this file cannot be found.

9-22

Deployed Applications

To work around this, try each of these suggestions in this order:

• Ensure that your application runs in MATLAB (uncompiled) without this
error.

• Ensure that MATLAB starts up without this error.

• Verify that the generated CTF archive contains a file called matlabrc.m.

• Verify that the generated code (in the *_mcc_component_data.c* file) adds
the CTF archive folder containing matlabrc.m to the MCR path.

• Delete the *_mcr folder and rerun the application.

• Recompile the application.

This MATLAB file does not have proper version information and may
be corrupt. Please delete the extraction directory and rerun the
application. The MATLAB file <MATLAB file> cannot be executed.
MATLAB:err_parse_cannot_run_m_file. This message is an indication
that the MCR has found nonencrypted MATLAB files on its path and has
attempted to execute them. This error is often caused by the use of addpath,
either explicitly in your application, or implicitly in a startup.m file. If you
use addpath in a compiled application, you must ensure that the added folders
contain only data files. (They cannot contain MATLAB files, or you’ll get this
error.)

To work around this, protect your calls to addpath with the isdeployed
function.

This application has failed to start because mclmcrrt7x.dll was
not found. Re-installing the application may fix this problem.
mclmcrrt7x.dll contains the public interface to the MCR. This library must
be present on all machines that run applications generated by MATLAB
Compiler. Typically, this means that either the MCR is not installed on this
machine, or that the PATH does not contain the folder where this DLL is
located.

To work around this, install the MCR or modify the path appropriately. The
path must contain <mcr_root>/<version>/runtime/<arch>, for example:
c:\mcr\v73\runtime\win32|win64.

9-23

9 Troubleshooting

Linker cannot find library and fails to create standalone application
(win32 and win64). If you try building your standalone application without
mbuild, you must link to the following dynamic library:

mclmcrrt.lib

This library is found in one of the following locations, depending on your
architecture:

matlabroot\extern\lib\win32\arch
matlabroot\extern\lib\win64\arch

where arch is microsoft, watcom, or lcc.

Version ’GCC_4.2.0’ not found. When running on Linux platforms, users
may report that a run time error occurs that states that the GCC_4.2.0 library
is not found by applications built with MATLAB Compiler.

To resolve this error, do the following:

1 Navigate to matlabroot/sys/os/glnx86.

2 Rename the following files with a prefix of old_:

• libgcc_s.so.1

• libstdc++.so.6.0.8

• libgfortran.so.1.0.0

For example, rename libgcc_s.so.1 to old_libgcc_s.so.1. you must
rename all three of the above files. Alternately, you can create a subfolder
named old and move the files there.

Error: library mclmcrrt76.dll not found. This error can occur for the
following reasons:

• The machine on which you are trying to run the application an different,
incompatible version of the MCR installed on it than the one the application
was originally built with.

• You are not running a version of MATLAB Compiler compatible with the
MCR version the application was built with.

9-24

Deployed Applications

To solve this problem, on the deployment machine, install the version of
MATLAB you used to build the application.

Invalid .NET Framework.\n Either the specified framework was not
found or is not currently supported. This error occurs when the .NET
Framework version your application is specifying (represented by n) is not
supported by the current version of MATLAB Compiler. See the MATLAB
Builder NE Release Notes for a list of supported .NET Framework versions.

MATLAB:I18n:InconsistentLocale. The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

System.AccessViolationException: Attempted to read or write
protected memory. The message:

System.ArgumentException: Generate Queries
threw General Exception:

System.AccessViolationException: Attempted to
read or write protected memory.

This is often an indication that other memory is corrupt.

indicates a library initialization error caused by a Microsoft Visual Studio
project linked against a MCLMCRRT7XX.DLL placed outside matlabroot.

Unhandled exception at 0x0002d580 in clientApp.exe: 0xC0000005:
Access violation reading location 0x0002d580. This message may
be due to compiling the DLL library in the lcc compiler while linking
with a Microsoft linker. The Microsoft linker may not be able to read an
lcc-produced DLL.

9-25

9 Troubleshooting

9-26

10

Limitations and
Restrictions

• “MATLAB® Compiler™ Limitations” on page 10-2

• “Licensing Terms and Restrictions on Compiled Applications” on page 10-9

• “MATLAB Functions That Cannot Be Compiled” on page 10-10

10 Limitations and Restrictions

MATLAB Compiler Limitations

In this section...

“Compiling MATLAB and Toolboxes” on page 10-2

“Fixing Callback Problems: Missing Functions” on page 10-3

“Finding Missing Functions in a MATLAB File” on page 10-5

“Suppressing Warnings on the UNIX System” on page 10-5

“Cannot Use Graphics with the -nojvm Option” on page 10-6

“Cannot Create the Output File” on page 10-6

“No MATLAB File Help for Compiled Functions” on page 10-6

“No MCR Versioning on Mac OS X” on page 10-7

“Older Neural Networks Not Deployable with MATLAB® Compiler™” on
page 10-7

“Restrictions on Calling PRINTDLG with Multiple Arguments in Compiled
Mode” on page 10-7

“Compiling a Function with WHICH Does Not Search Current Working
Directory” on page 10-8

“Restrictions on Using C++ SETDATA to Dynamically Resize an MWArray”
on page 10-8

Compiling MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all
toolboxes based on MATLAB. However, some limited MATLAB and toolbox
functionality is not licensed for compilation.

• Most of the prebuilt graphical user interfaces included in MATLAB and its
companion toolboxes will not compile.

• Functionality that cannot be called directly from the command line will
not compile.

• Some toolboxes, such as Symbolic Math Toolbox™, will not compile.

10-2

MATLAB® Compiler™ Limitations

Compiled applications can only run on operating systems that run MATLAB.
Also, since the MCR is approximately the same size as MATLAB, applications
built with MATLAB Compiler need specific storage memory and RAM to
operate. For the most up-to-date information about system requirements, go
to the MathWorks Web site.

To see a full list of MATLAB Compiler limitations, visit
http://www.mathworks.com/products/compiler/compiler_support.html.

Note See “MATLAB Functions That Cannot Be Compiled” on page 10-10 for
a list of functions that cannot be compiled.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it compiles the
MATLAB file(s) you specify on the command line and, in addition, it compiles
any other MATLAB files that your MATLAB file(s) calls. MATLAB Compiler
uses a dependency analysis, which determines all the functions on which
the supplied MATLAB files, MEX-files, and P-files depend. The dependency
analysis may not locate a function if the only place the function is called in
your MATLAB file is a call to the function either

• In a callback string

• In a string passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from depfun in .mat files
that get loaded by compiled applications. Use the mcc -a argument or the
%#function pragma to identify .mat file classes or functions that should be
supported by the load command.

MATLAB Compiler does not look in these text strings for the names of
functions to compile.

10-3

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/products/compiler/compiler_support.html

10 Limitations and Restrictions

Symptom
Your application runs, but an interactive user interface element, such as
a push button, does not work. The compiled application issues this error
message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as strings

• Specifying callbacks with function handles

• Using the -a option

Specifying Callbacks as Strings. Create a list of all the functions that are
specified only in callback strings and pass these functions using separate
%#function pragma statements. This overrides the product’s dependency
analysis and instructs it to explicitly include the functions listed in the
%#function pragmas.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure MATLAB
Compiler processes the change_colormap MATLAB file, list the function
name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
'Style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...

10-4

MATLAB® Compiler™ Limitations

'CallBack','change_colormap');

Specifying Callbacks with Function Handles. To specify the callbacks
with function handles, use the same code as in the example above and replace
the last line with

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB
Programming Fundamentals documentation.

Using the -a Option. Instead of using the %#function pragma, you can
specify the name of the missing MATLAB file on the MATLAB Compiler
command line using the -a option.

Finding Missing Functions in a MATLAB File
To find functions in your application that may need to be listed in a
%#function pragma, search your MATLAB file source code for text strings
specified as callback strings or as arguments to the feval, fminbnd,
fminsearch, funm, and fzero functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your MATLAB file. This will find all the Callback
properties defined by Handle Graphics® objects, such as uicontrol and
uimenu. In addition, this will find the properties of figures and axes that end
in Fcn, such as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings may appear when you run a standalone application on the
UNIX system. This section describes how to suppress these warnings.

• To suppress the app-defaults warnings, set XAPPLRESDIR to point to
<mcr_root>/<ver>/X11/app-defaults.

• To suppress the libjvm.so warning, make sure you set the dynamic library
path properly for your platform. See .

10-5

10 Limitations and Restrictions

You can also use the MATLAB Compiler option -R -nojvm to set your
application’s nojvm run-time option, if the application is capable of running
without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you
will get a run-time error.

Cannot Create the Output File
If you receive the error

Can't create the output file filename

there are several possible causes to consider:

• Lack of write permission for the folder where MATLAB Compiler is
attempting to write the file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting
to write the file (most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is
possible that a process is running and is blocking MATLAB Compiler from
overwriting it with a new version.

No MATLAB File Help for Compiled Functions
If you create a MATLAB file with self-documenting online help by entering
text on one or more contiguous comment lines beginning with the second line
of the file and then compile it, the results of the command

help filename

will be unintelligible.

Note Due to performance reasons, MATLAB file comments are stripped
out before MCR encryption.

10-6

MATLAB® Compiler™ Limitations

No MCR Versioning on Mac OS X
The feature that allows you to install multiple versions of the MCR on the
same machine is currently not supported on Mac OS X. When you receive
a new version of MATLAB , you must recompile and redeploy all of your
applications and components. Also, when you install a new MCR onto a target
machine, you must delete the old version of the MCR and install the new one.
You can only have one version of the MCR on the target machine.

Older Neural Networks Not Deployable with
MATLAB Compiler
Loading networks saved from older Neural Network Toolbox versions
requires some initialization routines that are not deployable. Therefore, these
networks cannot be deployed without first being updated.

For example, deploying with Neural Network Toolbox Version 5.0.1 (2006b)
and MATLAB Compiler Version 4.5 (R2006b) yields the following errors at
run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
function "initwb".

Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode
In compiled mode, only one argument can be present in a call to the MATLAB
printdlg function (for example, printdlg(gcf)).

You will not receive an error when making at call to printdlg with multiple
arguments. However, when an application containing the multiple-argument
call is compiled, the compile will fail with the following error message:

Error using = => printdlg at 11

10-7

10 Limitations and Restrictions

PRINTDLG requires exactly one argument

Compiling a Function with WHICH Does Not Search
Current Working Directory
Using which, as in this example:

function pathtest
which myFile.mat
open('myFile.mat')

does not cause the current working folder to be searched in deployed
applications. In addition, it may cause unpredictable behavior of the open
function.

Use one of the following solutions as alternatives to using which:

• Use the pwd function to explicitly point to the file in the current folder, as
follows:

open([pwd 'myFile.mat'])

• Rather than using the general open function, use load or other specialized
functions for your particular file type, as load explicitly checks for the file
in the current folder. For example:

load myFile.mat

• Include your file using the Other Files area of your project using
deploytool (and the -a flag using mcc).

Restrictions on Using C++ SETDATA to Dynamically
Resize an MWArray
You cannot use the C++ SETDATA function to dynamically resize MWArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SETDATA to increase the size of the array to a length of five
elements.

10-8

Licensing Terms and Restrictions on Compiled Applications

Licensing Terms and Restrictions on Compiled Applications
Applications you build with a trial MATLAB Compiler license are valid for
thirty (30) days only.

Applications you build with a purchased license of MATLAB Compiler have
no expiration date.

10-9

10 Limitations and Restrictions

MATLAB Functions That Cannot Be Compiled

Note Due to the number of active and ever-changing list of MathWorks
products and functions, this is not a complete list of functions that can not be
compiled. If you have a question as to whether a specific MathWorks product’s
function is able to be compiled or not, the definitive source is that product’s
documentation, not the MATLAB Compiler documentation.

Some functions are not supported in standalone mode; that is, you cannot
compile them with MATLAB Compiler. These functions are in the following
categories:

• Functions that print or report MATLAB code from a function, for example,
the MATLAB help function or debug functions, will not work.

• Simulink® functions, in general, will not work.

• Functions that require a command line, for example, the MATLAB lookfor
function, will not work.

• clc, home, and savepath will not do anything in deployed mode.

• Tools that allow run-time manipulation of figures

Returned values from standalone applications will be 0 for successful
completion or a nonzero value otherwise.

In addition, there are functions and programs that have been identified as
nondeployable due to licensing restrictions.

mccExcludedFiles.log lists all the functions and files excluded by mcc if
they can not be compiled. It is created after each attempted build if there are
functions or files that cannot be compiled.

List of Unsupported Functions and Programs

add_block

add_line

10-10

MATLAB® Functions That Cannot Be Compiled

List of Unsupported Functions and Programs (Continued)

applescript

checkcode

close_system

colormapeditor

commandwindow

Control System Toolbox™ prescale GUI

createClassFromWsdl

dbclear

dbcont

dbdown

dbquit

dbstack

dbstatus

dbstep

dbstop

dbtype

dbup

delete_block

delete_line

depfun

doc

echo

edit

fields

figure_palette

get_param

help

10-11

10 Limitations and Restrictions

List of Unsupported Functions and Programs (Continued)

home

inmem

keyboard

linkdata

linmod

mislocked

mlock

more

munlock

new_system

open_system

pack

pcode

plotbrowser

plotedit

plottools

profile

profsave

propedit

propertyeditor

publish

rehash

restoredefaultpath

run

segment

set_param

10-12

MATLAB® Functions That Cannot Be Compiled

List of Unsupported Functions and Programs (Continued)

sim

simget

simset

sldebug

type

10-13

10 Limitations and Restrictions

10-14

11

Reference Information

• “MCR Path Settings for Development and Testing” on page 11-2

• “MCR Path Settings for Run-time Deployment” on page 11-5

• “MATLAB® Compiler™ Licensing” on page 11-8

• “Application Deployment Terms” on page 11-10

11 Reference Information

MCR Path Settings for Development and Testing

In this section...

“Overview” on page 11-2

“Path for Java Development on All Platforms ” on page 11-2

“Path Modifications Required for Accessibility” on page 11-2

“Windows Settings for Development and Testing” on page 11-3

“Linux Settings for Development and Testing” on page 11-3

“Mac Settings for Development and Testing” on page 11-3

Overview
The following information is for developers developing applications that use
libraries or components that contain compiled MATLAB code. These settings
are required on the machine where you are developing your application.
Other settings required by end users at run time are described in .

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

Path for Java Development on All Platforms
There are additional requirements when programming in the Java
programming language. See “Deploying Applications That Call the Java
Native Libraries” on page 6-25.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

11-2

MCR Path Settings for Development and Testing

Windows Settings for Development and Testing
When programming with components that are generated with MATLAB
Compiler, add the following folder to your system PATH environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line.

Linux (64-bit)

setenv LD_LIBRARY_PATH

matlabroot/runtime/glnxa64:

matlabroot/bin/glnxa64:

matlabroot/sys/os/glnxa64:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/server:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64:

setenv XAPPLRESDIR matlabroot/X11/app-defaults

Mac Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line.

Mac

setenv DYLD_LIBRARY_PATH

matlabroot/runtime/maci64:

matlabroot/bin/maci64:

matlabroot/sys/os/maci64:

11-3

11 Reference Information

setenv XAPPLRESDIR matlabroot/X11/app-defaults

11-4

MCR Path Settings for Run-time Deployment

MCR Path Settings for Run-time Deployment

In this section...

“General Path Guidelines” on page 11-5

“Path for Java Applications on All Platforms” on page 11-5

“Windows Path for Run-Time Deployment” on page 11-5

“Linux Paths for Run-Time Deployment” on page 11-6

“Mac Paths for Run-Time Deployment” on page 11-7

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to
placing specific folders on the path:

• Always avoid including bin or arch on the path. Failure to do so may
inhibit ability to run multiple MCR instances.

• Ideally, set the environment in a separate shell script to avoid run-time
errors caused by path-related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled MATLAB code, you
must instruct them to set the path so that the system can find the MCR.

Note When you deploy a Java application to end users, they must set the
class path on the target machine.

The system needs to find .jar files containing the MATLAB libraries. To tell
the system how to locate the .jar files it needs, specify a classpath either in
the javac command or in your system environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

mcr_root\version\runtime\win32|win64

11-5

11 Reference Information

where mcr_root refers to the complete path where the MCR library archive
files are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install
the MCR.

Note If you are running the MCR Installer on a shared folder, be aware that
other users of the share may need to alter their system configuration.

Linux Paths for Run-Time Deployment
Use these setenv commands to set your MCR run-time paths.

If you are unfamiliar with these commands, see “Set MCR Paths on Mac or
Linux with Scripts” on page B-12 for a detailed procedural and troubleshooting
guide, as well as pointers to other information about installing, configuring,
building, deploying, and integrating your MATLAB code on Linux.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line. The setenv command
is specific to the C shell (csh). See MATLAB External Interfaces for more
information.

Linux (64-bit)

setenv LD_LIBRARY_PATH

mcr_root/version/runtime/glnxa64:

mcr_root/version/bin/glnxa64:

mcr_root/version/sys/os/glnxa64:

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64/server:

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64:

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

11-6

MCR Path Settings for Run-time Deployment

Mac Paths for Run-Time Deployment
Use these setenv commands to set your MCR run-time paths.

If you are unfamiliar with these commands, see “Set MCR Paths on Mac or
Linux with Scripts” on page B-12 for a detailed procedural and troubleshooting
guide, as well as pointers to other information about installing, configuring,
building, deploying, and integrating your MATLAB code on a Mac.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line. The setenv command
is specific to the C shell (csh). See MATLAB External Interfaces for more
information.

Mac

setenv DYLD_LIBRARY_PATH

mcr_root/version/runtime/maci64:

mcr_root/version/bin/maci64:

mcr_root/version/sys/os/maci64:

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

11-7

11 Reference Information

MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt
(MATLAB mode) or the DOS/UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This means that when the
MATLAB Compiler license is checked out, a timer is started. When that timer
reaches 30 minutes, the license key is returned to the license pool. The license
key will not be returned until that 30 minutes is up, regardless of whether
mcc has exited or not

Each time a compiler command is issued, the timer is reset.

Running MATLAB Compiler in MATLAB Mode
When you run MATLAB Compiler from “inside” of the MATLAB environment,
that is, you run mcc from the MATLAB command prompt, you hold the
MATLAB Compiler license as long as MATLAB remains open. To give up the
MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode
If you run MATLAB Compiler from a DOS or UNIX prompt, you are running
from “outside” of MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB
Compiler is running

• Gives the user a dedicated 30-minute time allotment during which the user
has complete ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute
time period as the sole owner of the MATLAB Compiler license. Anytime
during the 30-minute segment, if the same user requests MATLAB Compiler ,
the user gets a new 30-minute allotment. When the 30-minute interval has
elapsed, if a different user requests MATLAB Compiler , the new user gets
the next 30-minute interval.

11-8

MATLAB® Compiler™ Licensing

When a user requests MATLAB Compiler and a license is not available, the
user receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best
way to guarantee that all MATLAB Compiler users have constant access to
MATLAB Compiler is to have an adequate supply of licenses for your users.

11-9

11 Reference Information

Application Deployment Terms
Glossary of Deployment Product Terms

A

Add-in— A Microsoft Excel add-in is an executable piece of code that can be
actively integrated into a Microsoft Excel application. Add-ins are front-ends
for COM components, usually written in some form of Microsoft Visual Basic®.

API — Application program interface. An implementation of the proxy
software design pattern. See MWArray.

Application — An end user-system into which a deployed functions or
solution is ultimately integrated. Typically, the end goal for the Deployment
customer is integration of a deployed MATLAB function into a larger
enterprise environment application. The deployment products prepare
the MATLAB function for integration by wrapping MATLAB code with
enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly— An executable bundle of code, especially in .NET. For example,
after building a deployable .NET component with MATLAB Builder NE,
the .NET developer integrates the resulting .NET assembly into a larger
enterprise C# application. See Executable.

B

Binary — See Executable.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other
object-oriented languages that is a prototype for an object in an object-oriented
language. It is analogous to a derived type in a procedural language. A class
is a set of objects which share a common structure and behavior. Classes
relate in a class hierarchy. One class is a specialization (a subclass) of another
(one of its superclasses) or comprises other classes. Some classes use other

11-10

Application Deployment Terms

classes in a client-server relationship. Abstract classes have no members, and
concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile a component
involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB
code builds with MATLAB Builder JA, a Java wrapper provides Java code
that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code
behind a Microsoft Excel add-in. In MATLAB Builder NE, an executable
component, to be integrated with Microsoft COM applications.

Component — In MATLAB, a generic term used to describe the wrappered
MATLAB code produced by MATLAB Compiler. You can plug these
self-contained bundles of code you plug into various computing environments.
The wrapper enables the compatibility between the computing environment
and your code.

Console application — Any application that is executed from a system
command prompt window. If you are using a non-Windows operating system,
console applications are often referred to as standalone applications.

CTF archive (Component Technology File) — The Component Technology
File (CTF) archive is embedded by default in each generated binary by
MATLAB Compiler. It houses the deployable package. All MATLAB-based
content in the CTF archive uses the Advanced Encryption Standard (AES)
cryptosystem. See “Additional Details” on page 3-11 in the MATLAB Compiler
documentation.

D

Data Marshaling — Data conversion, usually from one type to another.
Unless a MATLAB deployment customer is using type-safe interfaces, data
marshaling—as from mathematical data types to MathWorks data types such
as represented by the MWArray API—must be performed manually, often
at great cost.

Deploy— The act of integrating a component into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

11-11

11 Reference Information

DLL — Dynamic link library. Microsoft’s implementation of the shared
library concept for Windows. Using DLLs is much preferred over the previous
technology of static (or non-dynamic) libraries, which had to be manually
linked and updated.

E

Executable— An executable bundle of code, made up of binary bits (zeros and
ones) and sometimes called a binary.

H

Helper files — Files that support the main file or the file that calls all
supporting functions. Add resources that depend upon the function that
calls the supporting function to the Shared Resources and Helper Files
section of the Deployment Tool GUI. Other examples of supporting files or
resources include:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into the
main file

I

Integration — Combining a deployed component’s functionality with
functionality that currently exists in an enterprise application. For example,
a customer creates a mathematical model to forecast trends in certain
commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance)
the deployed financial model must be integrated with existing C# applications,
run in the .NET enterprise environment. Integration is usually performed by
an IT developer, rather than a MATLAB Programmer, in larger environments.

J

11-12

Application Deployment Terms

JAR — Java archive. In computing software, a JAR file (or Java ARchive)
aggregates many files into one. Software developers generally use JARs
to distribute Java applications or libraries, in the form of classes and
associated metadata and resources (text, images, etc.). Computer users can
create or extract JAR files using the jar command that comes with a Java
Development Kit (JDK).

JDK— The Java Development Kit is a free Sun Microsystems product which
provides the environment required for programming in Java. The JDK is
available for various platforms, but most notably Sun™ Solaris and Microsoft
Windows. To build components with MATLAB Builder JA, download the JDK
that corresponds to the latest version of Java supported by MATLAB.

JRE— Java Run-Time Environment is the part of the Java Development Kit
(JDK) required to run Java programs. It comprises the Java Virtual Machine,
the Java platform core classes, and supporting files. It does not include the
compiler, debugger, or other tools present in the JDK. The JRE is the smallest
set of executables and files that constitute the standard Java platform.

M

Magic Square— A square array of integers arranged so that their sum is the
same when added vertically, horizontally, or diagonally.

Marshaling — See Data Marshaling.

mbuild— MATLAB Compiler command that invokes a script which compiles
and links C and C++ source files into standalone applications or shared
libraries. For more information, see the mbuild function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the
command-line equivalent of using the Deployment Tool GUI. See the mcc
reference page for the complete list of options available. Each builder product
has customized mcc options. See the respective builder documentation for
details.

MCR — The MATLAB Compiler Runtime is an execution engine made
up of the same shared libraries. MATLAB uses these libraries to enable
the execution of MATLAB files on systems without an installed version of

11-13

11 Reference Information

MATLAB. To deploy a component, you package the MCR along with it. Before
you use the MCR on a system without MATLAB, run the MCR Installer.

MCR Installer — An installation program run to install the MATLAB
Compiler Runtime on a development machine that does not have an installed
version of MATLAB. Find out more about the MCR Installer by reading
“Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)”
on page 1-36.

MCR Singleton — See Shared MCR Instance.

mxArray interface — The MATLAB data type containing all MATLAB
representations of standard mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface
(API) for exchanging data between your application and MATLAB. Using
MWArray, you marshal data from traditional mathematical types to a form
that can be processed and understood by MATLAB data type mxArray. There
are different implementations of the MWArray proxy for each application
programming language.

P

Package— The act of bundling the deployed component, along with the MCR
and other files, for rollout to users of the MATLAB deployment products.
After running the packaging function of the Deployment Tool, the package
file resides in the distrib subfolder. On Windows®, the package is a
self-extracting executable. On platforms other than Windows, it is a .zip file.
Use of this term is unrelated to Java Package.

Program— A bundle of code that is executed to achieve a purpose. Programs
usually are written to automate repetitive operations through computer
processing. Enterprise system applications usually consist of hundreds or
even thousands of smaller programs.

Proxy — A software design pattern typically using a class, which functions
as an interface to something else. For example, MWArray is a proxy for
programmers who need to access the underlying type mxArray.

S

11-14

Application Deployment Terms

Shared Library— Groups of files that reside in one space on disk or memory
for fast loading into Windows applications. Dynamic-link libraries (DLLs) are
Microsoft’s implementation of the shared library concept in for Microsoft
Windows.

Shared MCR Instance — When using MATLAB Builder NE or MATLAB
Builder JA, you can create a shared MCR instance, also known as a singleton.
For builder NE, this only applies to COM components. When you invoke
MATLAB Compiler with the -S option through the builders (using either mcc
or the Deployment Tool), a single MCR instance is created for each COM
or Java component in an application. You reuse this instance by sharing it
among all subsequent class instances within the component. Such sharing
results in more efficient memory usage and eliminates the MCR startup cost
in each subsequent class instantiation. All class instances share a single
MATLAB workspace and share global variables in the MATLAB files used
to build the component. MATLAB Builder NE and MATLAB Builder EX
are designed to create singletons by default for .NET assemblies and COM
components, respectively. For more information, see “Sharing an MCR
Instance in COM or Java Applications”.

Standalone application — Programs that are not part of a bundle of linked
libraries (as in shared libraries). Standalones are not dependent on operating
system services and can be accessed outside of a shared network environment.
Standalones are typically .exes (EXE files) in the Windows run-time
environment.

System Compiler — A key part of Interactive Development Environments
(IDEs) such as Microsoft Visual Studio. Before using MATLAB Compiler,
select a system compiler using the MATLAB command mbuild -setup.

T

Type-safe interface — An API that minimizes explicit type conversions by
hiding the MWArray type from the calling application. Using “Generate and
Implement Type-Safe Interfaces”, for example, .NET Developers work directly
with familiar native data types. You can avoid performing tedious MWArray
data marshaling by using type-safe interfaces.

W

11-15

11 Reference Information

WAR — Web Application ARchive. In computing, a WAR file is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes,
XML files, tag libraries, and static Web pages (HTML and related files) that
together constitute a Web application.

WCF—Windows Communication Foundation. The Windows Communication
Foundation™ (or WCF) is an application programming interface in the .NET
Framework for building connected, service-oriented, Web-centric applications.
WCF is designed in accordance with service oriented architecture principles to
support distributed computing where services are consumed. Clients consume
multiple services that can be consumed by multiple clients. Services are
loosely coupled to each other.

Webfigure— A MathWorks representation of a MATLAB figure, rendered on
the Web. Using the WebFigures feature, you display MATLAB figures on a
Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web, without the need to
download MATLAB or other tools that can consume costly resources.

Windows standalone application—Windows standalones differ from regular
standalones in that Windows standalones suppress their MS-DOS window
output. The equivalent method to specify a Windows standalone target on the
mcc command line is “-e Suppress MS-DOS Command Window” on page 12-29
If you are using a non-Windows operating system, console applications are
referred to as standalone applications.

11-16

12

Functions — Alphabetical
List

%#function
ctfroot
deployprint
deploytool
figToImStream
getmcruserdata
<library>Initialize[WithHandlers]
isdeployed
ismcc
mbuild
mcc
mclGetLastErrorMessage
mclGetLogFileName
mclInitializeApplication
mclIsJVMEnabled
mclIsMCRInitialized
mclIsNoDisplaySet
mclRunMain
mclTerminateApplication
mclWaitForFiguresToDie
mcrinstaller
mcrversion
setmcruserdata
<library>Terminate

%#function

Purpose Pragma to help MATLAB Compiler locate functions called through
feval, eval, or Handle Graphics callback

Syntax %#function function1 [function2 ... functionN]

%#function object_constructor

Description The %#function pragma informs MATLAB Compiler that the specified
function(s) will be called through an feval, eval, or Handle Graphics
callback.

Use the %#function pragma in standalone applications to inform
MATLAB Compiler that the specified function(s) should be included
in the compilation, whether or not MATLAB Compiler’s dependency
analysis detects the function(s). It is also possible to include objects by
specifying the object constructor.

Without this pragma, the product’s dependency analysis will not be able
to locate and compile all MATLAB files used in your application. This
pragma adds the top-level function as well as all the local functions in
the file to the compilation.

Examples Example 1

function foo
%#function bar

feval('bar');

end %function foo

By implementing this example, MATLAB Compiler is notified that
function bar will be included in the compilation and is called through
feval.

Example 2

function foo
%#function bar foobar

12-2

%#function

feval('bar');
feval('foobar');

end %function foo

In this example, multiple functions (bar and foobar) are included in
the compilation and are called through feval.

12-3

ctfroot

Purpose Location of files related to deployed application (CTF archive)

Syntax ctfroot

Description root = ctfroot returns a string that is the name of the folder where
the CTF file for the deployed application is expanded.

This function differs from matlabroot, which returns the path to where
core MATLAB functions and libraries are located. matlabroot returns
the root directory of the MCR when run against an installed MCR.

To determine the location of various toolbox folders in deployed mode,
use the toolboxdir function.

Examples appRoot = ctfroot; will return the location of your deployed
application files in this form: application_name_mcr.

Use this function to access any file that the user would have included in
their project (excluding the ones in the packaging folder).

How To • “Component Technology File (CTF Archive)” on page 3-8

12-4

deployprint

Purpose Use to print (as substitute for MATLAB print function) when working
with deployed Windows applications

Syntax deployprint

Description In cases where the print command would normally be issued when
running MATLAB software, use deployprint when working with
deployed applications.

deployprint is available on all platforms, however it is only required
on Windows.

deployprint supports all of the input arguments supported by print
except for the following.

Argument Description

-d Used to specify the type of the output (for
example. .JPG, .BMP, etc.). deployprint only
produces .BMP files.

Note To print to a file, use the print function.

-noui Used to suppress printing of user interface
controls. Similar to use in MATLAB print
function.

-setup The -setup option is not supported.

-s windowtitle MATLAB Compiler does not support
Simulink®.

deployprint supports a subset of the figure properties supported by
print. The following are supported:

• PaperPosition

• PaperSize

• PaperUnits

12-5

deployprint

• Orientation

• PrintHeader

Note deployprint requires write access to the file system in order to
write temporary files.

Examples The following is a simple example of how to print a figure in your
application, regardless of whether the application has been deployed
or not:

figure;
plot(1:10);
if isdeployed
deployprint;

else
print(gcf);

end

See Also isdeployed

12-6

deploytool

Purpose Open Deployment Tool, GUI for MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool window, which
is the graphical user interface (GUI) for MATLAB Compiler.

To get started using the Deployment Tool to create standalone
applications and libraries, see “The Magic Square Example” on page
1-13.

You can start deploytool in this manner on all platforms supported by
MATLAB Compiler.

Desired Results Command

Start Deployment Tool GUI with the
New/Open dialog box active

deploytool (default)
or
deploytool -n

Start Deployment Tool GUI and load
project_name

deploytool project_name.prj

Start Deployment Tool command line
interface and build project_name after
initializing

deploytool -build project_name.prj

Start Deployment Tool command line
interface and package project_name after
initializing

deploytool -package project_name.prj

12-7

deploytool

Desired Results Command

Start Deployment Tool and package an
existing project from the Command Line
Interface. Specifying the package_name is
optional. By default, a project is packaged
into a .zip file. On Windows, if the
package_name ends with .exe, the project
is packaged into a self-extracting .exe.

deploytool -package project_name.prj
package_name

Display MATLAB Help for the deploytool
command

deploytool -?

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

Examples

The Deployment Project Dialog Box (Shown when Deployment Tool is
first launched)

12-8

deploytool

The Deployment Tool GUI (Shown after Creating a Project or Opening
a Project)

12-9

figToImStream

Purpose Stream out figure as byte array encoded in format specified, creating
signed byte array in .png format

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. uint8 (unsigned byte) is used primarily for
.NET primitive byte. Default value is uint8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

12-10

getmcruserdata

Purpose Retrieve MATLAB array value associated with given string key

Syntax function_value = getmcruserdata(key)

Description The function_value = getmcruserdata(key) command is part of the
MCR User Data interface API. It returns an empty matrix if no such
key exists. For information about this function, as well as complete
examples of usage, see “Improving Data Access Using the MCR User
Data Interface” on page 5-32.

The MATLAB functions getmcruserdata and setmcruserdata can be
dragged and dropped (as you would any other MATLAB file), directly to
the deploytool GUI.

Examples function_value =
getmcruserdata('ParallelConfigurationFile');

See Also setmcruserdata

12-11

<library>Initialize[WithHandlers]

Purpose Initialize MCR instance associated with library

Syntax bool libraryInitialize(void)
bool libraryInitializeWithHandlers(

mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler)

Description Each generated library has its own MCR instance. These two functions,
libraryInitialize and libraryInitializeWithHandlers initialize
the MCR instance associated with library. Users must call one of these
functions after calling mclInitializeApplication and before calling
any of the compiled functions exported by the library. Each returns
a boolean indicating whether or not initialization was successful. If
they return false, calling any further compiled functions will result
in unpredictable behavior. libraryInitializeWithHandlers allows
users to specify how to handle error messages and printed text. The
functions passed to libraryInitializeWithHandlers will be installed
in the MCR instance and called whenever error text or regular text
is to be output.

Examples if (!libmatrixInitialize())
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -2;

}

See Also <library>Terminate

How To • “Library Initialization and Termination Functions” on page 8-28

12-12

isdeployed

Purpose Determine whether code is running in deployed or MATLAB mode

Syntax x = isdeployed

Description x = isdeployed returns true (1) when the function is running in
deployed mode and false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the
application with MATLAB Compiler, the function will return true when
the application is run in deployed mode. If you run the application
containing this function in a MATLAB session, the function will return
false.

12-13

ismcc

Purpose Test if code is running during compilation process (using mcc)

Syntax x = ismcc

Description x = ismcc returns true when the function is being executed by mcc
dependency checker and false otherwise.

When this function is executed by the compilation process started by
mcc, it will return true. This function will return false when executed
within MATLAB as well as in deployed mode. To test for deployed mode
execution, use isdeployed. This function should be used to guard
code in matlabrc, or hgrc (or any function called within them, for
example startup.m in the example on this page), from being executed
by MATLAB Compiler (mcc) or any of the Builder products.

In a typical example, a user has ADDPATH calls in their MATLAB
code. These can be guarded from executing using ismcc during the
compilation process and isdeployed for the deployed application or
component as shown in the example on this page.

Examples `% startup.m
if ~(ismcc || isdeployed)

addpath(fullfile(matlabroot,'work'));
end

See Also isdeployed | mcc

12-14

mbuild

Purpose Compile and link source files into standalone application or shared
library

Syntax mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
[objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]
[exportfile1 ... exportfileN]

Note Supported types of source files are .c, .cpp, .idl, .rc. To
specify IDL source files to be compiled with the Microsoft Interface
Definition Language (MIDL) Compiler, add <filename>.idl to the
mbuild command line. To specify a DEF file, add <filename>.def to
the command line. To specify an RC file, add <filename>.rc to the
command line. Source files that are not one of the supported types are
passed to the linker.

Description mbuild is a script that supports various options that allow you to
customize the building and linking of your code. This table lists the set
of mbuild options. If no platform is listed, the option is available on
both UNIX and Windows.

Option Description

@<rspfile> (Windows only) Include the contents of the text
file <rspfile> as command line arguments to
mbuild.

-<arch> Build an output file for architecture -<arch>.
To determine the value for -<arch>, type
computer ('arch') at the MATLAB Command
Prompt on the target machine. Note: Valid
values for -<arch> depend on the architecture
of the build platform.

-c Compile only. Creates an object file only.

12-15

mbuild

Option Description

-D<name> Define a symbol name to the C preprocessor.
Equivalent to a #define <name> directive in
the source.

-D<name>=<value> Define a symbol name and value to the C
preprocessor. Equivalent to a #define <name>
<value> directive in the source.

-f <optionsfile> Specify location and name of options file to
use. Overrides the mbuild default options file
search mechanism.

-g Create an executable containing additional
symbolic information for use in debugging.
This option disables the mbuild default
behavior of optimizing built object code (see
the -O option).

-h[elp] Print help for mbuild.

-I<pathname> Add <pathname> to the list of folders to search
for #include files.

-inline Inline matrix accessor functions (mx*). The
executable generated may not be compatible
with future versions of MATLAB.

-install_name Fully-qualified path name of product
installation on Mac.

12-16

mbuild

Option Description

-l<name> Link with object library. On Windows
systems, <name> expands to <name>.lib or
lib<name>.lib and on UNIX systems, to
lib<name>.so or lib<name>.dylib. Do not
add a space after this switch.

Note When linking with a library, it is
essential that you first specify the path (with
-I<pathname>, for example).

-L<folder> Add <folder> to the list of folders to search
for libraries specified with the -l option. On
UNIX systems, you must also set the run-time
library path, as explained in . Do not add a
space after this switch.

-lang <language> Specify compiler language. <language> can be
c or cpp. By default, mbuild determines which
compiler (C or C++) to use by inspection of the
source file’s extension. This option overrides
that default.

-n No execute mode. Print out any commands
that mbuild would otherwise have executed,
but do not actually execute any of them.

-O Optimize the object code. Optimization is
enabled by default and by including this option
on the command line. If the -g option appears
without the -O option, optimization is disabled.

-outdir <dirname> Place all output files in folder <dirname>.

12-17

mbuild

Option Description

-output
<resultname>

Create an executable named <resultname>.
An appropriate executable extension is
automatically appended. Overrides the mbuild
default executable naming mechanism.

-regsvr (Windows only) Use the regsvr32 program to
register the resulting shared library at the end
of compilation. MATLAB Compiler uses this
option whenever it produces a COM or .NET
wrapper file.

-setup Interactively specify the compiler options file
to use as the default for future invocations of
mbuild by placing it in the user profile folder
(returned by the prefdir command). When
this option is specified, no other command line
input is accepted.

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the
-D option.)

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command line arguments
are considered. Prints each compile step and
final link step fully evaluated.

<name>=<value> Supplement or override an options file variable
for variable <name>. This option is processed
after the options file is processed and all
command line arguments are considered. You
may need to use the shell’s quoting syntax to
protect characters such as spaces that have
a meaning in the shell syntax. On Windows
double quotes are used (e.g., COMPFLAGS="opt1
opt2"), and on UNIX single quotes are used
(e.g., CFLAGS='opt1 opt2').

12-18

mbuild

Option Description

It is common to use this option to supplement
a variable already defined. To do this, refer
to the variable by prepending a $ (e.g.,
COMPFLAGS="$COMPFLAGS opt2" on Windows
or CFLAGS='$CFLAGS opt2' on UNIX).

Caution

In recent releases,mbuild’s functionality has been all but eclipsed by mcc
and deploytool. Avoid using mbuild in your long-term development
plans, as it is likely to be obsoleted in coming releases.

Some of these options (-f, -g, and -v) are available on the mcc command
line and are passed along to mbuild. Others can be passed along using
the -M option to mcc. For details on the -M option, see the mcc reference
page.

mbuild can also create shared libraries from C source code. If a file with
the extension .exports is passed to MBUILD, a shared library is built.
The .exports file must be a text file, with each line containing either
an exported symbol name, or starting with a # or * in the first column
(in which case it is treated as a comment line). If multiple .exports
files are specified, all symbol names in all specified .exports files are
exported.

12-19

mbuild

Note On Windows platforms, at either the MATLAB prompt or the
DOS prompt, use double quotes (") when specifying command-line
overrides with mbuild. For example:

mbuild -v COMPFLAGS="$COMPFLAGS -Wall"
LINKFLAGS="$LINKFLAGS /VERBOSE" yprime.c

At the MATLAB command line on UNIX platforms, (") when specifying
command-line overrides with mbuild. Use the backslash (\) escape
character before the dollar sign ($). For example:

mbuild -v CFLAGS="\$CFLAGS -Wall"
LDFLAGS="\$LDFLAGS-w" yprime.c

At the shell command line on UNIX platforms, use single quotes (').
For example:

mbuild -v CFLAGS='$CFLAGS -Wall'
LDFLAGS='$LDFLAGS -w' yprime.c

Examples To set up or change the default C/C++ compiler for use with MATLAB
Compiler, use

mbuild -setup

To compile and link an external C program foo.c against libfoo, use

mbuild foo.c -L. -lfoo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both foo.c and the library generated above are in the
current working folder.

12-20

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc [-options] mfile1 [mfile2 ... mfileN]
[C/C++file1 ... C/C++fileN]

Description mcc is the MATLAB command that invokes MATLAB Compiler. You
can issue the mcc command either from the MATLAB command prompt
(MATLAB mode) or the DOS or UNIX command line (standalone mode).

mcc prepares MATLAB file(s) for deployment outside of the MATLAB
environment, generates wrapper files in C or C++, optionally builds
standalone binary files, and writes any resulting files into the current
folder, by default.

If more than one MATLAB file is specified on the command line,
MATLAB Compiler generates a C or C++ function for each MATLAB
file. If C or object files are specified, they are passed to mbuild along
with any generated C files.

mcc assumes all input variables are strings, unless otherwise specified.

Note Using mcc in Function Mode — It is possible to use the mcc
command in Function Mode by enclosing each mcc argument with
single-quotes (').

12-21

mcc

Options -a Add to Archive

Add a file to the CTF archive. Use

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added
to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation will cause
a path entry to be added to the deployed application’s run-time path

12-22

mcc

so that they will appear on the path when the deployed application
or component is executed.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
gets created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

Caution

If you use the -a flag to include a file that is not on the MATLAB path,
the folder containing the file will be added to MATLAB’s dependency
analysis path. As a result, other files from that folder may be included
in the compiled application.

Note Currently, * is the only supported wildcard.

Note If the -a flag is used to include custom Java classes, standalone
applications will work without any need to change the classpath
as long as the Java class is not a member of a package. The same
applies for JAR files. However, if the class being added is a member of
a package, the MATLAB code will need to make an appropriate call to
javaaddpath that will update the classpath with the parent folder
of the package.

12-23

mcc

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder EX.

12-24

mcc

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command line
options and corresponding arguments and/or other file names. The file
may contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See “Using Bundle Files to Build MATLAB Code” on page 6-9
for a list of the bundle files included with MATLAB Compiler.

12-25

mcc

-c Generate C Code Only

When used with a macro option, generate C wrapper code but do not
invoke mbuild, i.e., do not produce a standalone application. This option
is equivalent to the defunct -T codegen placed at the end of the mcc
command line.

12-26

mcc

-C Do Not Embed CTF Archive by Default

Overrides automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default. See
“MCR Component Cache and CTF Archive Embedding” on page 6-14
for more information.

12-27

mcc

-d Specified Directory for Output

Place output in a specified folder. Use

-d directory

to direct the output files from the compilation to the folder specified
by the -d option.

12-28

mcc

-e Suppress MS-DOS Command Window

Suppress appearance of the MS-DOS command window when
generating a standalone application. Use -e in place of the -m option.
This option is available for Windows only. Use with -R option to
generate error logging as such:

mcc -e -R -logfile -R 'filename' -v function_name

or:

mcc -e -R '-logfile,logfilename' -v function_name

For example, to build a Windows standalone from function foo.m that
suppresses the MS-DOS command window, and specifying error logging
to a text file, enter this command:

mcc -e -R '-logfile,errorlog.txt' -v foo.m

You can suppress the MS-DOS command window when using
deploytool by creating a Windows Standalone Application. For
information about creating a Windows Standalone Application, open
the Deployment Tool Help by clicking the Actions icon ().

This macro is equivalent to the defunct:

-W WinMain -T link:exe

Note This feature requires the application to successfully compile
with a Microsoft Compiler (such as that offered with the free Microsoft
Visual Studio Express).

12-29

mcc

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

to specify filename as the options file when calling mbuild. This option
allows you to use different ANSI compilers for different invocations of
MATLAB Compiler. This option is a direct pass-through to the mbuild
script.

Note MathWorks recommends that you use mbuild -setup.

12-30

mcc

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
enables you to backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not allow you to debug your
MATLAB files with a C/C++ debugger.

12-31

mcc

-G Debug Only

Same as -g.

12-32

mcc

-I Add Directory to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

would set up the search path so that directory1 is searched first for
MATLAB files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

12-33

mcc

-K Preserve Partial Output Files

Directs mcc to not delete output files if the compilation ends
prematurely, due to error.

mcc’s default behavior is to dispose of any partial output if the command
fails to execute successfully.

12-34

mcc

-l Generate a Function Library

Macro to create a function library. This option generates a library
wrapper function for each MATLAB file on the command line and calls
your C compiler to build a shared library, which exports these functions.
You must supply the name of the library (foo in the following example).

Using

mcc -l foo.m

is equivalent to using:

mcc -W lib:foo -T link:lib foo.m

12-35

mcc

-m Generate a Standalone Application

Macro to produce a standalone application. This macro is equivalent
to the defunct:

-W main -T link:exe

Use the -e option instead of the -m option to generate a standalone
application while suppressing the appearance of the MS-DOS Command
Window.

Note Using the -e option requires the application to successfully
compile with a Microsoft Compiler (such as that offered with the free
Microsoft Visual Studio Express).

12-36

mcc

-M Direct Pass Through

Define compile-time options. Use

-M string

to pass string directly to the mbuild script. This provides
a useful mechanism for defining compile-time options, e.g.,
-M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

12-37

mcc

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot/toolbox/matlab

• matlabroot/toolbox/local

• matlabroot/toolbox/compiler/deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line
allows you to replace folders from the original path, while retaining the
relative ordering of the included folders. All subfolders of the included
folders that appear on the original path are also included. In addition,
the -N option retains all folders that the user has included on the path
that are not under matlabroot/toolbox.

12-38

mcc

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

12-39

mcc

-p Add Directory to Path

Used in conjunction with required option -N to add specific folders (and
subfolders) under matlabroot/toolbox to the compilation MATLAB
path in an order sensitive way. Use the syntax:

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder.
The rules for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

12-40

mcc

-R Run-Time

Provide MCR run-time options. Use the syntax

-R option

to provide one of these run-time options.

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

-startmsg Customizable user message displayed at MCR
initialization time. See “Displaying MCR
Initialization Start-Up and Completion Messages For
Users” on page 5-35.

-completemsg Customizable user message displayed when MCR
initialization is complete. See “Displaying MCR
Initialization Start-Up and Completion Messages For
Users” on page 5-35.

See “Best Practices” on page 5-36 for information about using mcc -R
with initialization messages.

Note The -R option is available only for standalone applications. To
override MCR options in the other MATLAB Compiler targets, use the
mclInitializeApplication and mclTerminateApplication functions.
For more information on these functions, see “Calling a Shared Library”
on page 8-13.

12-41

mcc

Caution

When running on Mac, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

12-42

mcc

-S Create Singleton MCR

Create a singleton MCR when compiling a COM object. Each instance
of the component uses the same MCR. Requires MATLAB Builder NE.

12-43

mcc

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Valid target values
are as follows:

Target Description

codegen Generates a C/C++ wrapper file.
The default is codegen.

compile:exe Same as codegen plus compiles
C/C++ files to object form suitable
for linking into a standalone
application.

compile:lib Same as codegen plus compiles
C/C++ files to object form
suitable for linking into a shared
library/DLL.

link:exe Same as compile:exe plus links
object files into a standalone
application.

link:lib Same as compile:lib plus
links object files into a shared
library/DLL.

12-44

mcc

-u Register COM Component for Current User

Registers COM component for the current user only on the development
machine. The argument applies only for generic COM component and
Microsoft Excel add-in targets only.

12-45

mcc

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information
about mbuild.

12-46

mcc

-w Warning Messages

Displays warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings. This table lists the valid syntaxes.

Syntax Description

-w list Generates a table that maps <string>
to warning message for use with enable,
disable, and error. Appendix C, “Error
and Warning Messages”, lists the same
information.

-w enable Enables complete warnings.

-w
disable[:<string>]

Disables specific warning associated
with <string>. Appendix C, “Error
and Warning Messages”, lists the valid
<string> values. Leave off the optional
<string> to apply the disable action to
all warnings.

-w enable[:<string>] Enables specific warning associated
with <string>. Appendix C, “Error
and Warning Messages”, lists the valid
<string> values. Leave off the optional
<string> to apply the enable action to all
warnings.

-w error[:<string>] Treats specific warning associated with
<string> as error. Leave off the optional
<string> to apply the error action to all
warnings.

12-47

mcc

Syntax Description

-w off[:<string>]
[<filename>]

Turns warnings off for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned off when generated by specific
<filename>s.

-w on[:<string>]
[<filename>]

Turns warnings on for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified
using isdeployed) in your startup.m, you write:

if isdeployed
warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed
warning on

end

12-48

mcc

-W Wrapper Function

Controls the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of
MATLAB files generated by MATLAB Compiler. You provide a list
of functions and MATLAB Compiler generates the wrapper functions
and any appropriate global variable definitions. This table shows the
valid options.

Type Description

main Produces a POSIX shell main() function.

lib:<string> Creates a C interface and produces an initialization
and termination function for use when compiling this
compiler generated code into a larger application.
This option also produces a header file containing
prototypes for all public functions in all MATLAB
files specified. <string> becomes the base (file) name
for the generated C/C++ and header file. Creates a
.exports file that contains all nonstatic function
names.

cpplib:<string> Creates a C++ interface and produces an initialization
and termination function for use when compiling this
compiler generated code into a larger application.
This option also produces a header file containing
prototypes for all public functions in all MATLAB
files specified. <string> becomes the base (file) name
for the generated C/C++ and header file. Creates a
.exports file that contains all nonstatic function
names.

none Does not produce a wrapper file. The default is none.

12-49

mcc

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

12-50

mcc

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

12-51

mcc

-? Help Message

Display MATLAB Compiler help at the command prompt.

12-52

mclGetLastErrorMessage

Purpose Last error message from unsuccessful function call

Syntax const char* mclGetLastErrorMessage()

Description This function returns a function error message (usually in the form
of false or -1).

Example char *args[] = { "-nodisplay" };
if(!mclInitializeApplication(args, 1))
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

See Also mclInitializeApplication | mclTerminateApplication |
<library>Initialize[WithHandlers] | <library>Terminate

12-53

mclGetLogFileName

Purpose Retrieve name of log file used by MCR

Syntax const char* mclGetLogFileName()

Description Use mclGetLogFileName() to retrieve the name of the log file used by
the MCR. Returns a character string representing log file name used by
MCR. For more information, see “Retrieving MCR Attributes” on page
5-30 in the User’s Guide.

Examples printf("Logfile name : %s\n",mclGetLogFileName());

12-54

mclInitializeApplication

Purpose Set up application state shared by all (future) MCR instances created in
current process

Syntax bool
mclInitializeApplication(const char **options, int count)

Description MATLAB Compiler-generated standalone executables contain
auto-generated code to call this function; users of shared libraries must
call this function manually. Call only once per process. The function
takes an array of strings (possibly of zero length) and a count containing
the size of the string array. The string array may contain the following
MATLAB command line switches, which have the same meaning as
they do when used in MATLAB. :

• -appendlogfile

• -Automation

• -beginfile

• -debug

• -defer

• -display

• -Embedding

• -endfile

• -fork

• -java

• -jdb

• -logfile

• -minimize

• -MLAutomation

• -noaccel

• -nodisplay

12-55

mclInitializeApplication

• -noFigureWindows

• -nojit

• -nojvm

• -noshelldde

• -nosplash

• -r

• -Regserver

• -shelldde

• -student

• -Unregserver

• -useJavaFigures

• -mwvisual

• -xrm

Caution

mclInitializeApplication must be called once only per process.
Calling mclInitializeApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Caution

When running on Mac, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Examples To start all MCRs in a given process with the -nodisplay option, for
example, use the following code:

12-56

mclInitializeApplication

const char *args[] = { "-nodisplay" };
if (! mclInitializeApplication(args, 1))
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

See Also mclTerminateApplication

How To • “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on page 8-13

12-57

mclIsJVMEnabled

Purpose Determine if MCR was launched with instance of Java Virtual Machine
(JVM)

Syntax bool mclIsJVMEnabled()

Description Use mclIsJVMEnabled() to determine if the MCR was launched
with an instance of a Java Virtual Machine (JVM). Returns true if
MCR is launched with a JVM instance, else returns false. For more
information, see “Retrieving MCR Attributes” on page 5-30 in the User’s
Guide.

Examples printf("JVM initialized : %d\n", mclIsJVMEnabled());

12-58

mclIsMCRInitialized

Purpose Determine if MCR has been properly initialized

Syntax bool mclIsMCRInitialized()

Description Use mclIsMCRInitialized() to determine whether or not the MCR has
been properly initialized. Returns true if MCR is already initialized;
else returns false. For more information, see “Retrieving MCR
Attributes” on page 5-30 in the User’s Guide.

Examples printf("MCR initialized : %d\n", mclIsMCRInitialized());

12-59

mclIsNoDisplaySet

Purpose Determine if -nodisplay mode is enabled

Syntax bool mclIsNoDisplaySet()

Description Use mclIsNoDisplaySet() to determine if -nodisplay mode is
enabled. Returns true if -nodisplay is enabled, else returns false.
For more information, see “Retrieving MCR Attributes” on page 5-30
in the User’s Guide.

Note Always returns false on Windows systems since the -nodisplay
option is not supported on Windows systems.

Examples printf("nodisplay set : %d\n",mclIsNoDisplaySet());

12-60

mclRunMain

Purpose Mechanism for creating identical wrapper code across all compiler
platform environments

Syntax typedef int (*mclMainFcnType)(int, const char **);

int mclRunMain(mclMainFcnType run_main,
int argc,
const char **argv)

run_main

Name of function to execute after MCR set-up code.

argc

Number of arguments being passed to run_main function. Usually,
argc is received by application at its main function.

argv

Pointer to an array of character pointers. Usually, argv is received by
application at its main function.

Description As you need to provide wrapper code when creating an application
which uses a C or C++ shared library created by MATLAB Compiler,
mclRunMain enables you with a mechanism for creating identical
wrapper code across all MATLAB Compiler platform environments.

mclRunMain is especially helpful in Macintosh OS X environments
where a run loop must be created for correct MCR operation.

When an OS X run loop is started, if mclInitializeApplication
specifies the -nojvm or -nodisplay option, creating a run loop is
a straight-forward process. Otherwise, you must create a Cocoa
framework. The Cocoa frameworks consist of libraries, APIs, and
Runtimes that form the development layer for all of Mac OS X.

Generally, the function pointed to by run_main returns with a pointer
(return value) to the code that invoked it. When using Cocoa on the

12-61

mclRunMain

Macintosh, however, when the function pointed to by run_main returns,
the MCR calls exit before the return value can be received by the
application, due to the inability of the underlying code to get control
when Cocoa is shut down.

Caution

You should not use mclRunMain if your application brings up its own
full graphical environment.

Note In non-Macintosh environments, mclRunMain acts as a wrapper
and doesn’t perform any significant processing.

Examples Call using this basic structure:

int returncode = 0;
mclInitializeApplication(NULL,0);
returncode = mclRunMain((mclmainFcn)

my_main_function,0,NULL);

See Also mclInitializeApplication

12-62

mclTerminateApplication

Purpose Close down all MCR-internal application state

Syntax bool mclTerminateApplication(void)

Description Call this function once at the end of your program to close down all
MCR-internal application state. Call only once per process. After
you have called this function, you cannot call any further MATLAB
Compiler-generated functions or any functions in any MATLAB library.

Caution

mclTerminateApplication must be called once only per process.
Calling mclTerminateApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Caution

mclTerminateApplication will close any visible or invisible figures
before exiting. If you have visible figures that you would like to wait
for, use mclWaitForFiguresToDie.

Examples At the start of your program, call mclInitializeApplication to ensure
your library was properly initialized:

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

At your program’s exit point, call mclTerminateApplication to
properly shut the application down:

12-63

mclTerminateApplication

mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return 0;

See Also mclInitializeApplication

How To • “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on page 8-13

12-64

mclWaitForFiguresToDie

Purpose Enable deployed applications to process Handle Graphics events,
enabling figure windows to remain displayed

Syntax void mclWaitForFiguresToDie(HMCRINSTANCE instReserved)

Description Calling void mclWaitForFiguresToDie enables the deployed
application to process Handle Graphics events.

NULL is the only parameter accepted for the MCR instance
(HMCRINSTANCE instReserved).

This function can only be called after libraryInitialize has been
called and before libraryTerminate has been called.

mclWaitForFiguresToDie blocks all open figures. This function runs
until no visible figures remain. At that point, it displays a warning if
there are invisible figures present. This function returns only when the
last figure window is manually closed — therefore, this function should
be called after the library launches at least one figure window. This
function may be called multiple times.

If this function is not called, any figure windows initially displayed by
the application briefly appear, and then the application exits.

Note mclWaitForFiguresToDie will block the calling program only for
MATLAB figures. It will not block any Java GUIs, ActiveX controls,
and other non-MATLAB GUIs unless they are embedded in a MATLAB
figure window.

Examples int run_main(int argc, const char** argv)
{

int some_variable = 0;
if (argc > 1)

test_to_run = atoi(argv[1]);

/* Initialize application */

12-65

mclWaitForFiguresToDie

if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

if (test_to_run == 1 || test_to_run == 0)
{
/* Initialize ax1ks library */
if (!libax1ksInitialize())
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}
}

if (test_to_run == 2 || test_to_run == 0)
{
/* Initialize simple library */
if (!libsimpleInitialize())
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}
}

/* your code here

12-66

mclWaitForFiguresToDie

/* your code here
/* your code here
/* your code here
/*
/* Block on open figures */
mclWaitForFiguresToDie(NULL);

/* Terminate libraries */
if (test_to_run == 1 || test_to_run == 0)
libax1ksTerminate();

if (test_to_run == 2 || test_to_run == 0)
libsimpleTerminate();

/* Terminate application */
mclTerminateApplication();

return(0);
}

How To • “Terminating Figures by Force In a Console Application” on page 6-25

12-67

mcrinstaller

Purpose Display version and location information for MCR installer
corresponding to current platform

Syntax [INSTALLER_PATH, MAJOR, MINOR, PLATFORM,
LIST] = mcrinstaller;

Description Displays information about available MCR installers using the
format: [INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] =
mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current
platform.

• MAJOR is the major version number of the installer.

• MINOR is the minor version number of the installer.

• PLATFORM is the name of the current platform (returned by
COMPUTER(arch)).

• LIST is a cell array of strings containing the full paths to MCR
installers for other platforms. This list is non-empty only in a
multi-platform MATLAB installation.

Note You must distribute the MATLAB Compiler Runtime library
to your end users to enable them to run applications developed with
MATLAB Compiler. Prebuilt MCR installers for all licensed platforms
ship with MATLAB Compiler.

See “Working with the MCR” on page 5-17 for more information about
the MCR installer.

Examples Find MCR Installer Locations

Display locations of MCR Installers for platform. This example shows
output for a win64 system.

12-68

mcrinstaller

mcrinstaller

The WIN64 MCR Installer, version 7.16, is:
X:\jobx\clusterc\current\matlab\toolbox\compiler\

deploy\win64\MCRInstaller.exe

MCR installers for other platforms are located in:
X:\jobx\clusterc\current\matlab\toolbox\compiler\

deploy\win64
win64 is the value of COMPUTER(win64) on

the target machine.

For more information, read your local MCR Installer help.
Or see the online documentation at MathWorks' web site. (Page

may load slowly.)

ans =

X:\jobx\clusterc\current\matlab\toolbox\compiler\
deploy\win64\MCRInstaller.exe

12-69

mcrversion

Purpose Determine version of installed MATLAB Compiler Runtime (MCR)

Syntax [major, minor] = mcrversion;

Description The MCR version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable:
[major, minor] = mcrversion; Major and minor are returned as
integers.

If the version number ever increases to three or more digits, call
mcrversion with more outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples mcrversion
ans =

7

12-70

setmcruserdata

Purpose Associate MATLAB data value with string key

Syntax function setmcruserdata(key, value)

Description The function setmcruserdata(key, value) command is part of the
MCR User Data interface API. For information about this function, as
well as complete examples of usage, see “Improving Data Access Using
the MCR User Data Interface” on page 5-32.

The MATLAB functions getmcruserdata and setmcruserdata can be
dragged and dropped (as you would any other MATLAB file), directly to
the deploytool GUI.

Examples setmcruserdata('ParallelConfigurationFile','config.mat')

mxArray *value = mxCreateString("/usr/userdir/config.mat");
if (!SetMCRUserData("ParallelConfigurationFile",

"/usr/userdir/config.mat"))
{

fprintf(stderr,
Could not set MCR user data: \n %s ,

mclGetLastErrorMessage());
return -1;}

See Also getmcruserdata

12-71

<library>Terminate

Purpose Free all resources allocated by MCR instance associated with library

Syntax void libraryTerminate(void)

Description This function should be called after you finish calling the
functions in this MATLAB Compiler-generated library, but before
mclTerminateApplication is called.

Examples Call libmatrixInitialize to initialize libmatrix library properly
near the start of your program:

/* Call the library intialization routine and ensure the
* library was initialized properly. */
if (!libmatrixInitialize())
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -2;

}
else

...

Near the end of your program (but before calling
mclTerminateApplication) free resources allocated by the
MCR instance associated with library libmatrix:

/* Call the library termination routine */
libmatrixTerminate();
/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
}

See Also <library>Initialize[WithHandlers]

How To • “Library Initialization and Termination Functions” on page 8-28

12-72

13

Function Reference

Pragmas (p. 13-2) Directives to MATLAB Compiler

Command-Line Tools (p. 13-3) Deployment-related commands

API Functions (p. 13-4) Deployment API-related commands

13 Function Reference

Pragmas
%#function Pragma to help MATLAB Compiler

locate functions called through
feval, eval, or Handle Graphics
callback

13-2

Command-Line Tools

Command-Line Tools
ctfroot Location of files related to deployed

application (CTF archive)

deployprint Use to print (as substitute for
MATLAB print function) when
working with deployed Windows
applications

deploytool Open Deployment Tool, GUI for
MATLAB Compiler

isdeployed Determine whether code is running
in deployed or MATLAB mode

ismcc Test if code is running during
compilation process (using mcc)

mbuild Compile and link source files into
standalone application or shared
library

mcc Invoke MATLAB Compiler

mcrinstaller Display version and location
information for MCR installer
corresponding to current platform

mcrversion Determine version of installed
MATLAB Compiler Runtime (MCR)

13-3

13 Function Reference

API Functions
<library>Initialize[WithHandlers]Initialize MCR instance associated

with library

<library>Terminate Free all resources allocated by MCR
instance associated with library

figToImStream Stream out figure as byte array
encoded in format specified, creating
signed byte array in .png format

getmcruserdata Retrieve MATLAB array value
associated with given string key

mclGetLastErrorMessage Last error message from
unsuccessful function call

mclGetLogFileName Retrieve name of log file used by
MCR

mclInitializeApplication Set up application state shared by
all (future) MCR instances created
in current process

mclIsJVMEnabled Determine if MCR was launched
with instance of Java Virtual
Machine (JVM)

mclIsMCRInitialized Determine if MCR has been properly
initialized

mclIsNoDisplaySet Determine if -nodisplay mode is
enabled

mclRunMain Mechanism for creating identical
wrapper code across all compiler
platform environments

mclTerminateApplication Close down all MCR-internal
application state

13-4

API Functions

mclWaitForFiguresToDie Enable deployed applications to
process Handle Graphics events,
enabling figure windows to remain
displayed

setmcruserdata Associate MATLAB data value with
string key

13-5

13 Function Reference

13-6

A

MATLAB Compiler Quick
Reference

• “Common Uses of MATLAB® Compiler™ ” on page A-2

• “mcc Command Arguments Listed Alphabetically” on page A-4

• “mcc Command Line Arguments Grouped by Task” on page A-8

A MATLAB® Compiler™ Quick Reference

Common Uses of MATLAB Compiler

In this section...

“Create a Standalone Application” on page A-2

“Create a Library” on page A-2

Create a Standalone Application

Example 1
To create a standalone application from mymfile.m, use

mcc -m mymfile

Example 2
To create a standalone application from mymfile.m, look for mymfile.m in the
folder /files/source, and put the resulting C files and in /files/target,
use

mcc -m -I /files/source -d /files/target mymfile

Example 3
To create a standalone application mymfile1 from mymfile1.m and
mymfile2.m using a single mcc call, use

mcc -m mymfile1 mymfile2

Create a Library

Example 1
To create a C shared library from foo.m, use

mcc -l foo.m

A-2

Common Uses of MATLAB® Compiler™

Example 2
To create a C shared library called library_one from foo1.m and foo2.m, use

mcc -W lib:library_one -T link:lib foo1 foo2

Note You can add the -g option to any of these for debugging purposes.

A-3

A MATLAB® Compiler™ Quick Reference

mcc Command Arguments Listed Alphabetically
Bold entries in the Comment column indicate default values.

Option Description Comment

-a filename Add filename to the CTF
archive.

None

-b Generate Excel compatible
formula function.

Requires MATLAB Builder EX

-B
filename[:arg[,arg]]

Replace -B filename on the
mcc command line with the
contents of filename.

The file should contain only mcc
command-line options. These are
MathWorks included options files:

• -B csharedlib:foo — C shared
library

• -B cpplib:foo— C++ library

-c Generate C wrapper code. Equivalent to
-T codegen

-C Directs mcc to not embed
the CTF archive in C/C++
and main/Winmain shared
libraries and standalone
binaries by default.

See “MCR Component Cache and CTF
Archive Embedding” on page 6-14 for
more information.

-d directory Place output in specified
folder.

None

A-4

mcc Command Arguments Listed Alphabetically

Option Description Comment

-e Suppresses appearance of
the MS-DOS Command
Window when generating a
standalone application.

Use -e in place of the -m option.
Available for Windows only. Use
with -R option to generate error
logging. Equivalent to -W WinMain -T
link:exe

You can suppress the MS-DOS
command window when using
deploytool by creating a Windows
Standalone Application. For
information about creating a Windows
Standalone Application, open the
Deployment Tool Help by clicking the
Actions icon ().

-f filename Use the specified options
file, filename, when calling
mbuild.

mbuild -setup is recommended.

-g Generate debugging
information.

None

-G Same as -g None

-I directory Add folder to search path for
MATLAB files.

MATLAB path is automatically
included when running from MATLAB,
but not when running from aDOS/UNIX
shell.

-K Directs mcc to not delete
output files if the compilation
ends prematurely, due to
error.

mcc’s default behavior is to dispose of
any partial output if the command fails
to execute successfully.

-l Macro to create a function
library.

Equivalent to
-W lib -T link:lib

-m Macro to generate a
standalone application.

Equivalent to
-W main -T link:exe

-M string Pass string to mbuild. Use to define compile-time options.

A-5

A MATLAB® Compiler™ Quick Reference

Option Description Comment

-N Clear the path of all but
a minimal, required set of
folders.

None

-o outputfile Specify name of final output
file.

Adds appropriate extension

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

-R option Specify run-time options for
MCR.

option =
-nojvm
-nodisplay
-logfile filename
-startmsg
-completemsg filename

-S Create Singleton MCR. For COM components only. Requires
MATLAB Builder NE or MATLAB
Builder EX.

-u Registers COM component
for current user only on
development machine

Valid only for generic COM components
and Microsoft Excel add-ins (requiring
MATLAB Builder EX)

-T Specify the output target
phase and type.

Default is codegen.

-v Verbose; display compilation
steps.

None

-w option Display warning messages. option = list
level
level:string
where level = disable

enable
error
error

[off:string | on:string]

A-6

mcc Command Arguments Listed Alphabetically

Option Description Comment

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,clname,version

-Y licensefile Use licensefile when
checking out a MATLAB
Compiler license.

None

-? Display help message. None

A-7

A MATLAB® Compiler™ Quick Reference

mcc Command Line Arguments Grouped by Task
Bold entries in the Comment column indicate default values.

COM Components

Option Description Comment

-u Registers COM
component for
current user only on
development machine

Valid only for generic
COM components and
Microsoft Excel add-ins
(requiring MATLAB
Builder EX)

A-8

mcc Command Line Arguments Grouped by Task

CTF Archive

Option Description Comment

-a filename Add filename to the
CTF archive.

None

-C Directs mcc to not
embed the CTF
archive in C/C++
and main/Winmain
shared libraries and
standalone binaries by
default.

See “MCR Component
Cache and CTF
Archive Embedding”
on page 6-14 for more
information.

A-9

A MATLAB® Compiler™ Quick Reference

Debugging

Option Description Comment

-g Generate debugging
information.

None

-G Same as -g None

-K Directs mcc to not
delete output files if
the compilation ends
prematurely, due to
error.

mcc’s default behavior
is to dispose of any
partial output if the
command fails to
execute successfully.

-v Verbose; display
compilation steps.

None

-W type Control the generation
of function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,

clname,version

-? Display help message. None

A-10

mcc Command Line Arguments Grouped by Task

Dependency Function (depfun) Processing

Option Description Comment

-a filename Add filename to the
CTF archive.

None

A-11

A MATLAB® Compiler™ Quick Reference

Licenses

Option Description Comment

-Y licensefile Use licensefile
when checking out a
MATLAB Compiler
license.

None

A-12

mcc Command Line Arguments Grouped by Task

MATLAB Builder EX

Option Description Comment

-b Generate Excel
compatible formula
function.

Requires MATLAB
Builder EX

-u Registers COM
component for
current user only on
development machine

Valid only for generic
COM components and
Microsoft Excel add-ins
(requiring MATLAB
Builder EX)

A-13

A MATLAB® Compiler™ Quick Reference

MATLAB Path

Option Description Comment

-I directory Add folder to search
path for MATLAB files.

MATLAB path is
automatically included
when running from
MATLAB, but not
when running from a
DOS/UNIX shell.

-N Clear the path of all but
a minimal, required set
of folders.

None

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

A-14

mcc Command Line Arguments Grouped by Task

mbuild

Option Description Comment

-f filename Use the specified
options file, filename,
when calling mbuild.

mbuild -setup is
recommended.

-M string Pass string to mbuild. Use to define
compile-time options.

A-15

A MATLAB® Compiler™ Quick Reference

MATLAB Compiler Runtime (MCR)

Option Description Comment

-R option Specify run-time
options for MCR.

option =
-nojvm
-nodisplay
-logfile

filename
-startmsg
-completemsg

filename

-S Create Singleton MCR. Requires MATLAB
Builder NE

A-16

mcc Command Line Arguments Grouped by Task

Override Default Inputs

Option Description Comment

-B
filename[:arg[,arg]]

Replace -B filename
on the mcc command
line with the contents
of filename (bundle).

The file should contain
only mcc command-line
options. These are
MathWorks included
options files:

• -B csharedlib:foo
— C shared library

• -B cpplib:foo —
C++ library

A-17

A MATLAB® Compiler™ Quick Reference

Override Default Outputs

Option Description Comment

-d directory Place output in
specified folder.

None

-o outputfile Specify name of final
output file.

Adds appropriate
extension

-e Suppresses appearance
of the MS-DOS
Command Window
when generating a
standalone application.

Use -e in place of the
-m option. Available
for Windows only.
Use with -R option
to generate error
logging. Equivalent
to -W WinMain -T
link:exe

You can suppress the
MS-DOS command
window when using
deploytool by creating
a Windows Standalone
Application.
For information
about creating a
Windows Standalone
Application, open the
Deployment Tool Help
by clicking the Actions
icon ().

A-18

mcc Command Line Arguments Grouped by Task

Wrappers and Libraries

Option Description Comment

-c Generate C wrapper
code.

Equivalent to
-T codegen

-l Macro to create a
function library.

Equivalent to
-W lib -T link:lib

-m Macro to generate a
standalone application.

Equivalent to
-W main -T link:exe

-W type Control the generation
of function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,

clname,version

A-19

A MATLAB® Compiler™ Quick Reference

A-20

B

Using MATLAB Compiler
on Mac or Linux

• “Overview” on page B-2

• “Installing MATLAB® Compiler™ on Mac or Linux” on page B-3

• “Writing Applications for Mac or Linux” on page B-4

• “Building Your Application on Mac or Linux ” on page B-10

• “Testing Your Application on Mac or Linux” on page B-11

• “Running Your Application on Mac or Linux” on page B-12

• “Run Your 64-Bit Mac Application” on page B-15

B Using MATLAB® Compiler™ on Mac or Linux®

Overview
If you use MATLAB Compiler on Linux or Macintosh systems, use this
appendix as a quick reference to common tasks.

B-2

Installing MATLAB® Compiler™ on Mac or Linux®

Installing MATLAB Compiler on Mac or Linux

In this section...

“Installing MATLAB® Compiler™” on page B-3

“Selecting Your gcc Compiler” on page B-3

“Custom Configuring Your Options File” on page B-3

“Install Apple Xcode from DVD on Maci64” on page B-3

Installing MATLAB Compiler
See “Supported ANSI C and C++ UNIX Compilers” on page 2-3 for general
installation instructions and information about supported compilers.

Selecting Your gcc Compiler
Run mbuild -setup to select your gcc compiler . See the “UNIX” on page 2-9
configuration instructions for more information about running mbuild .

Custom Configuring Your Options File
To modify the current linker settings, or disable a particular set of warnings,
locate your options file for your “UNIX Operating System” on page 2-11, and
view instructions for “Changing the Options File” on page 2-11.

Install Apple Xcode from DVD on Maci64
When installing on 64-bit Macintosh systems, install the Apple Xcode from
the installation DVD.

B-3

B Using MATLAB® Compiler™ on Mac or Linux®

Writing Applications for Mac or Linux

In this section...

“Objective-C/C++ Applications for Apple’s Cocoa API” on page B-4

“Where’s the Example Code?” on page B-4

“Preparing Your Apple Xcode Development Environment” on page B-4

“Build and Run the Sierpinski Application” on page B-5

“Running the Sierpinski Application” on page B-7

Objective-C/C++ Applications for Apple’s Cocoa API
Apple Xcode, implemented in the Objective-C language, is used to develop
applications using the Cocoa framework, the native object-oriented API for
the Mac OS X operating system.

This article details how to deploy a graphical MATLAB application with
Objective C and Cocoa, and then deploy it using MATLAB Compiler.

Where’s the Example Code?
You can find example Apple Xcode, header, and project files in
matlabroot/extern/examples/compiler/xcode.

Preparing Your Apple Xcode Development
Environment
To run this example, you should have prior experience with the Apple Xcode
development environment and the Cocoa framework.

The example in this article is ready to build and run. However, before you
build and run your own applications, you must do the following (as has been
done in our example code):

1 Build the shared library with MATLAB Compiler using either the
Deployment Tool or mcc.

B-4

Writing Applications for Mac or Linux®

2 Compile application code against the component’s header file and link the
application against the component library and libmwmclmcrrt. See “Set
MCR Paths on Mac or Linux with Scripts” on page B-12 and “Solving
Problems Related to Setting MCR Paths on Mac or Linux” on page B-12 for
information about and MCR paths and libmwmclmcrrt.

3 In your Apple Xcode project:

• Specify mcc in the project target (Build Component Library in the
example code).

• Specify target settings in HEADER_SEARCH_PATHS.

– Specify directories containing the component header.

– Specify the path matlabroot/extern/include.

– Define MWINSTALL_ROOT, which establishes the install route using
a relative path.

• Set LIBRARY_SEARCH_PATHS to any directories containing the component’s
shared library, as well as to the path matlabroot/runtime/maci64.

Build and Run the Sierpinski Application
In this example, you deploy the graphical Sierpinski function (sierpinski.m,
located at matlabroot/extern/examples/compiler).

function [x, y] = sierpinski(iterations, draw)
% SIERPINSKI Calculate (optionally draw) the points
% in Sierpinski's triangle

% Copyright 2004 The MathWorks, Inc.

% Three points defining a nice wide triangle
points = [0.5 0.9 ; 0.1 0.1 ; 0.9 0.1];

% Select an initial point
current = rand(1, 2);

% Create a figure window
if (draw == true)

f = figure;
hold on;

B-5

B Using MATLAB® Compiler™ on Mac or Linux®

end

% Pre-allocate space for the results, to improve performance
x = zeros(1,iterations);
y = zeros(1,iterations);

% Iterate
for i = 1:iterations

% Select point at random
index = floor(rand * 3) + 1;

% Calculate midpoint between current point and random point
current(1) = (current(1) + points(index, 1)) / 2;
current(2) = (current(2) + points(index, 2)) / 2;

% Plot that point
if draw, line(current(1),current(2));, end

x(i) = current(1);
y(i) = current(2);

end

if (draw)
drawnow;

end

1 Using the Mac Finder, locate the Apple Xcode project
(matlabroot/extern/examples/compiler/xcode). Copy files to
a working directory to run this example, if needed.

2 Open sierpinski.xcodeproj. The development environment starts.

3 In the Groups and Files pane, select Targets.

4 Click Build and Run. The make file runs that launches MATLAB
Compiler (mcc).

B-6

Writing Applications for Mac or Linux®

Running the Sierpinski Application
Run the Sierpinski application from the build output directory. The
following GUI appears:

MATLAB Sierpinski Function Implemented in the Mac Cocoa Environment

1 In the Iterations field, enter an integer such as 10000:

B-7

B Using MATLAB® Compiler™ on Mac or Linux®

2 Click Draw Triangle. The following figure appears:

B-8

Writing Applications for Mac or Linux®

B-9

B Using MATLAB® Compiler™ on Mac or Linux®

Building Your Application on Mac or Linux

In this section...

“Compiling Your Application with the Deployment Tool” on page B-10

“Compiling Your Application with the Command Line” on page B-10

Compiling Your Application with the Deployment Tool
When running a graphical interface (such as XWindows) from your Mac
or Linux desktop, use “The Magic Square Example” on page 1-13 as an
end-to-end template for building a standalone or shared library with the
Deployment Tool (deploytool).

See “Using the Deployment Tool from the Command Line” on page 4-6 for
information on invoking deploytool from the command line.

Compiling Your Application with the Command Line
For compiling your application at the command line, there are separate
Macintosh and non-Macintosh instructions for Mac or Linux platforms.

On Non-Maci64 Platforms
Use the section“Input and Output Files” on page 4-8 for lists of files produced
and supplied to mcc when building a “Standalone Executable” on page 4-8, “C
Shared Library” on page 4-9, or “C++ Shared Library” on page 4-11.

On Maci64
Use the section “Input and Output Files” on page 4-8 for lists of files produced
and supplied to mcc when building a “Macintosh 64 (Maci64)” on page 4-13
application.

B-10

Testing Your Application on Mac or Linux®

Testing Your Application on Mac or Linux
When you test your application, understand that deployed applications in the
Windows environment automatically modify the system PATH variable.

On , however, you perform this step manually, based on what type of
operating system you use. Refer to for details.

B-11

B Using MATLAB® Compiler™ on Mac or Linux®

Running Your Application on Mac or Linux

In this section...

“Installing the MCR on Mac or Linux” on page B-12

“Set MCR Paths on Mac or Linux with Scripts” on page B-12

“Running Applications on Linux Systems with No Display Console” on page
B-14

Installing the MCR on Mac or Linux
See “Working with the MCR” on page 5-17 for complete information on
installing the MCR.

See “The MCR Installer” on page 5-18 for details about how to run deployed
components against specific MCR installations.

Performing a Silent Installation of the MCR on Mac or Linux
See the MATLAB Installation Guide for information on silent install and
other command-line options for installing the MCR.

Set MCR Paths on Mac or Linux with Scripts
When you build applications, associated shell scripts (run_application.sh)
are automatically generated in the same folder as your binary. By running
these scripts, you can conveniently set the path to your MCR location.

These paths can be found in the article .

Solving Problems Related to Setting MCR Paths on Mac or Linux
Use the following to solve common problems and issues:

I tried running SETENV on Mac and the command failed

If the setenv command fails with a message similar to setenv: command
not found or setenv: not found, you may not be using a C Shell command
interpreter (such as csh or tcsh).

B-12

Running Your Application on Mac or Linux®

Instead of running the commands above, which are in the format of setenv
my_variable my_value, use the command format my_variable=my_value ;
export my_variable.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH = mcr_root/v711/runtime/maci64:mcr_root/
...

My Mac application fails with “Library not loaded” or “Image not
found” even though my EVs are set

If you set your environment variables, you may still receive the following
message when you run your application:

imac-joe-user:~ joeuser$ /Users/joeuser/Documents/MATLAB/Dip/Dip ; exit;
dyld: Library not loaded: @loader_path/libmwmclmcrrt.7.11.dylib
Referenced from: /Users/joeuser/Documents/MATLAB/Dip/Dip
Reason: image not found
Trace/BPT trap
logout

You may have set your environment variables initially, but they were not set
up as persistent variables. Do the following:

1 In your root directory, open a file such as .bashrc or .profile file in your
log-in shell.

2 In either of these types of log-in shell files, add commands to set
your environment variables so that they persist. For example, to set
DYLD_LIBRARY_PATH or XAPPLRESDIR in this manner, you enter the
following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=/Users/joeuser/Desktop/mcr/v711/runtime/maci64:
/Users/joeuser/Desktop/mcr/v711/sys/os/maci64:/Users/joeuser/Desktop/
mcr//v711/bin/maci64:/System/Library/Frameworks/JavaVM.framework/
JavaVM:/System/Library/Frameworks/JavaVM.framework/Libraries
export DYLD_LIBRARY_PATH

B-13

B Using MATLAB® Compiler™ on Mac or Linux®

XAPPLRESDIR=/Users/joeuser/Desktop/mcr/v711/X11/app-defaults
export XAPPLRESDIR

?

Note The DYLD_LIBRARY_PATH= statement is one statement that must
be entered as a single line. The statement is shown on different lines, in
this example, for readability only.

Running Applications on Linux Systems with No
Display Console
Your compiled MATLAB applications should execute normally on a computer
with no display, providing there is some graphical environment such as X11
(or a similar X-Windows compatible environment) installed.

To test whether a compiled application will run on a system with no console,
attempt to install and run the MATLAB Compiler Runtime.

B-14

Run Your 64-Bit Mac Application

Run Your 64-Bit Mac Application

In this section...

“Overview” on page B-15

“Installing the Macintosh Application Launcher Preference Pane” on page
B-15

“Configuring the Installation Area” on page B-15

“Launching the Application” on page B-18

Overview
64-bit Macintosh graphical applications, launched through the Mac OS X
finder utility, require additional configuration if MATLAB software or the
MCR were not installed in default locations.

Installing the Macintosh Application Launcher
Preference Pane
Install the Macintosh Application Launcher preference pane, which gives you
the ability to specify your installation area.

1 In the Mac OS X Finder, navigate to
install_area/toolbox/compiler/maci64.

2 Double-click on MW_App_Launch.prefPane.

Note to Administrators: The Macintosh Application Launcher manages
only user preference settings. If you copy the preferences defined in the
launcher to the Macintosh System Preferences area, the preferences are still
manipulated in the User Preferences area.

Configuring the Installation Area
Once the preference pane is installed, you configure the installation area.

B-15

B Using MATLAB® Compiler™ on Mac or Linux®

1 Launch the preference pane by clicking on the apple logo in the upper left
corner of the desktop.

2 Click on System Preferences. The MW_App_Launch preference pane
appears in the Other area.

The Macintosh Application Launcher

3 Click Add Install Area to define an installation area on your system.

4 Define the default installation path by browsing to it.

5 Click Open.

B-16

Run Your 64-Bit Mac Application

Modifying Your Installation Area
Occasionally, you remove an installation area, define additional areas or
change the order of installation area precedence.

You can use the following options in MathWorks Application Launcher to
modify your installation area:

• Add Install Area — Defines the path on your system where your
applications install by default.

• Remove Install Area— Removes a previously defined installation area.

B-17

B Using MATLAB® Compiler™ on Mac or Linux®

• Move Up— After selecting an installation area, click this button to move
the defined path up the list. Binaries defined in installation areas at the
top of the list have precedence over all succeeding entries.

• Move Down — After selecting an installation area, click this button to
move the defined path down the list. Binaries defined in installation areas
at the top of the list have precedence over all succeeding entries.

• Apply— Saves changes and exits MathWorks Application Launcher.

• Revert — Exits MathWorks Application Launcher without saving any
changes.

Launching the Application
When you create a 64-bit Macintosh application, a Macintosh bundle is
created. If the application does not require standard input and output, launch
the application by clicking on the bundle in the Mac OS X Finder utility.

The location of the bundle is determined by whether you use mcc or
deploytool to build the application:

• If you use deploytool, the application bundle is placed in the compiled
application’s distrib directory. Use deploytool to package your
application. See “Packaging (Optional)” on page 1-21 for more details.
Place the resulting archive file anywhere on the desktop.

• If you use mcc, the application bundle is placed in the current working
directory or in the output directory as specified by the mcc “-o Specify
Output Name” on page 12-39 switch.

B-18

C

Error and Warning
Messages

• “About Error and Warning Messages” on page C-2

• “Compile-Time Errors” on page C-3

• “Warning Messages” on page C-7

• “depfun Errors” on page C-10

C Error and Warning Messages

About Error and Warning Messages
This appendix lists and describes error messages and warnings generated
by MATLAB Compiler. Compile-time messages are generated during the
compile or link phase. It is useful to note that most of these compile-time
error messages should not occur if the MATLAB software can successfully
execute the corresponding MATLAB file.

Use this reference to:

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

When using MATLAB Compiler, if you receive an internal error message,
record the specific message and report it to Technical Support at
http://www.mathworks.com/contact_TS.html.

C-2

http://www.mathworks.com/contact_TS.html

Compile-Time Errors

Compile-Time Errors
Error: An error occurred while shelling out to mex/mbuild (error
code = errorno). Unable to build (specify the -v option for more
information). MATLAB Compiler reports this error if mbuild or mex
generates an error.

Error: An error occurred writing to file "filename": reason. The file
can not be written. The reason is provided by the operating system. For
example, you may not have sufficient disk space available to write the file.

Error: Cannot write file "filename" because MCC has already created
a file with that name, or a file with that name was specified as a
command line argument. MATLAB Compiler has been instructed to
generate two files with the same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional MATLAB
Compiler licenses are available for your workgroup.

Error: Initializing preferences required to run the application. The
.ctf file and the corresponding target (standalone application or shared
library) created using MATLAB Compiler do not match. Ensure that the .ctf
file and the target file are created as output from the same mcc command.
Verify the time stamp of these files to ensure they were created at the same
time. Never combine the .ctf file and the target application created during
execution of different mcc commands.

Error: File: "filename" not found. A specified file can not be found on the
path. Verify that the file exists and that the path includes the file’s location.
You can use the -I option to add a folder to the search path.

Error: File: "filename" is a script MATLAB file and cannot be compiled
with the current Compiler. MATLAB Compiler cannot compile script
MATLAB files. To learn how to convert script MATLAB files to function
MATLAB files, see “Converting Script MATLAB Files to Function MATLAB
Files” on page 6-20.

C-3

C Error and Warning Messages

Error: File: filename Line: # Column: # A variable cannot be made
storageclass1 after being used as a storageclass2. You cannot change
a variable’s storage class (global/local/persistent). Even though MATLAB
allows this type of change in scope, MATLAB Compiler does not.

Error: Found illegal whitespace character in command line option:
"string". The strings on the left and right side of the space should
be separate arguments to MCC. For example:

mcc('-m', '-v', 'hello')% Correct
mcc('-m -v', 'hello') % Incorrect

Error: Improper usage of option -optionname. Type "mcc -?" for
usage information. You have incorrectly used a MATLAB Compiler
option. For more information about MATLAB Compiler options, see “mcc
Command Arguments Listed Alphabetically” on page A-4, or type mcc -? at
the command prompt.

Error: libraryname library not found. MATLAB has been installed
incorrectly.

Error: No source files were specified (-? for help). You must provide
MATLAB Compiler with the name of the source file(s) to compile.

Error: "optionname" is not a valid -option option argument. You must
use an argument that corresponds to the option. For example:

mcc -W main ... % Correct
mcc -W mex ... % Incorrect

Error: Out of memory. Typically, this message occurs because MATLAB
Compiler requests a larger segment of memory from the operating system
than is currently available. Adding additional memory to your system can
alleviate this problem.

Error: Previous warning treated as error. When you use the -w error
option, this error appears immediately after a warning message.

C-4

Compile-Time Errors

Error: The argument after the -option option must contain a colon.
The format for this argument requires a colon. For more information, see
“mcc Command Arguments Listed Alphabetically” on page A-4, or type mcc
-? at the command prompt.

Error: The environment variable MATLAB must be set to the MATLAB
root directory. On UNIX, the MATLAB and LM_LICENSE_FILE variables must
be set. The mcc shell script does this automatically when it is called the first
time.

Error: The license manager failed to initialize (error code is
errornumber). You do not have a valid MATLAB Compiler license or no
additional MATLAB Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -?
for help). The specified option is not available.

Error: The specified file "filename" cannot be read. There is a problem
with your specified file. For example, the file is not readable because there
is no read permission.

Error: The -optionname option requires an argument (e.g.
"proper_example_usage"). You have incorrectly used a MATLAB
Compiler option. For more information about MATLAB Compiler options, see
“mcc Command Arguments Listed Alphabetically” on page A-4, or type mcc
-? at the command prompt.

Error: -x is no longer supported. MATLAB Compiler no longer generates
MEX-files because there is no longer any performance advantage to doing so.
The MATLAB JIT Accelerator makes compilation for speed obsolete.

Error: Unable to open file "filename":<string>. There is a problem with
your specified file. For example, there is no write permission to the output
folder, or the disk is full.

Error: Unable to set license linger interval (error code is
errornumber). A license manager failure has occurred. Contact Technical
Support with the full text of the error message.

C-5

http://www.mathworks.com/support/
http://www.mathworks.com/support/

C Error and Warning Messages

Error: Unknown warning enable/disable string: warningstring. -w
enable:, -w disable:, and -w error: require you to use one of the warning
string identifiers listed in “Warning Messages” on page C-7.

Error: Unrecognized option: -option. The option is not a valid option.
See “mcc Command Arguments Listed Alphabetically” on page A-4, for a
complete list of valid options for MATLAB Compiler, or type mcc -? at the
command prompt.

C-6

Warning Messages

Warning Messages
This section lists the warning messages that MATLAB Compiler can generate.
Using the -w option for mcc, you can control which messages are displayed.
Each warning message contains a description and the warning message
identifier string (in parentheses) that you can enable or disable with the -w
option. For example, to produce an error message if you are using a trial
MATLAB Compiler license to create your standalone application, you can use:

mcc -w error:trial_license -mvg hello

To enable all warnings except those generated by the save command, use:

mcc -w enable -w disable:trial_license ...

To display a list of all the warning message identifier strings, use:

mcc -w list -m mfilename

For additional information about the -w option, see “mcc Command
Arguments Listed Alphabetically” on page A-4.

Warning: File: filename Line: # Column: # The #function pragma
expects a list of function names. (pragma_function_missing_names) This
pragma informs MATLAB Compiler that the specified function(s) provided
in the list of function names will be called through an feval call. This will
automatically compile the selected functions.

Warning: MATLAB file "filename" was specified on the command line
with full path of "pathname", but was found on the search path
in directory "directoryname" first. (specified_file_mismatch) MATLAB
Compiler detected an inconsistency between the location of the MATLAB file
as given on the command line and in the search path. MATLAB Compiler
uses the location in the search path. This warning occurs when you specify a
full path name on the mcc command line and a file with the same base name
(file name) is found earlier on the search path. This warning is issued in the
following example if the file afile.m exists in both dir1 and dir2:

mcc -m -I /dir1 /dir2/afile.m

C-7

C Error and Warning Messages

Warning: The file filename was repeated on MATLAB Compiler
command line. (repeated_file) This warning occurs when the same file name
appears more than once on the compiler command line. For example:

mcc -m sample.m sample.m % Will generate the warning

Warning: The name of a shared library should begin with the letters
"lib". "libraryname" doesn’t. (missing_lib_sentinel) This warning is
generated if the name of the specified library does not begin with the letters
“lib”. This warning is specific to UNIX and does not occur on the Windows
operating system. For example:

mcc -t -W lib:liba -T link:lib a0 a1 % No warning
mcc -t -W lib:a -T link:lib a0 a1 % Will generate a warning

Warning: All warnings are disabled. (all_warnings) This warning
displays all warnings generated by MATLAB Compiler. This warning is
disabled.

Warning: A line has num1 characters, violating the maximum page
width (num2). (max_page_width_violation) This warning is generated if
there are lines that exceed the maximum page width, num2. This warning
is disabled.

Warning: The option -optionname is ignored in modename mode
(specify -? for help). (switch_ignored) This warning is generated if an
option is specified on the mcc command line that is not meaningful in the
specified mode. This warning is enabled.

Warning: Unrecognized Compiler pragma "pragmaname".
(unrecognized_pragma) This warning is generated if you use an unrecognized
pragma. This warning is enabled.

Warning: "functionname1" is a MEX- or P-file being referenced
from "functionname2". (mex_or_p_file) This warning is generated if
functionname2 calls functionname1, which is a MEX- or P-file. This warning
is enabled.

C-8

Warning Messages

Note A link error is produced if a call to this function is made from standalone
code.

Trial Compiler license. The generated application will expire 30 days
from today, on date. (trial_license) This warning displays the date that the
deployed application will expire. This warning is enabled.

C-9

C Error and Warning Messages

depfun Errors

In this section...

“About depfun Errors” on page C-10

“MCR/Dispatcher Errors” on page C-10

“XML Parser Errors” on page C-10

“depfun-Produced Errors” on page C-11

About depfun Errors
MATLAB Compiler uses a dependency analysis (depfun) to determine the list
of necessary files to include in the CTF package. If this analysis encounters a
problem, depfun displays an error.

These error messages take the form

depfun Error: <message>

There are three causes of these messages:

• MCR/Dispatcher errors

• XML parser errors

• depfun-produced errors

MCR/Dispatcher Errors
These errors originate directly from the MCR/Dispatcher. If one of
these error occurs, report it to Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

XML Parser Errors
These errors appear as

depfun Error: XML error: <message>

C-10

http://www.mathworks.com/contact_TS.html

depfun Errors

Where <message> is a message returned by the XML parser. If
this error occurs, report it to Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

depfun-Produced Errors
These errors originate directly from depfun.

depfun Error: Internal error. This error occurs if an internal error
is encountered that is unexpected, for example, a memory allocation
error or a system error of some kind. This error is never user generated.
If this error occurs, report it to Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

depfun Error: Unexpected error thrown. This error is similar to the
previous one. If this error occurs, report it to Technical Support at MathWorks
at http://www.mathworks.com/contact_TS.html.

depfun Error: Invalid file name: <filename>. An invalid file name was
passed to depfun.

depfun Error: Invalid directory: <dirname>. An invalid folder was
passed to depfun.

C-11

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

C Error and Warning Messages

C-12

D

C++ Utility Library
Reference

D C++ Utility Library Reference

Data Conversion Restrictions for the C++ MWArray API
Currently, returning a Java object to your application, from a compiled
MATLAB function, is unsupported.

D-2

Primitive Types

Primitive Types
The mwArray API supports all primitive types that can be stored in a MATLAB
array. This table lists all the types.

Type Description mxClassID

mxChar Character type mxCHAR_CLASS

mxLogical Logical or Boolean type mxLOGICAL_CLASS

mxDouble Double-precision
floating-point type

mxDOUBLE_CLASS

mxSingle Single-precision
floating-point type

mxSINGLE_CLASS

mxInt8 1-byte signed integer mxINT8_CLASS

mxUint8 1-byte unsigned integer mxUINT8_CLASS

mxInt16 2-byte singed integer mxINT16_CLASS

mxUint16 2-byte unsigned integer mxUINT16_CLASS

mxInt32 4-byte signed integer mxINT32_CLASS

mxUint32 4-byte unsigned integer mxUINT32_CLASS

mxInt64 8-byte signed integer mxINT64_CLASS

mxUint64 8-byte unsigned integer mxUINT64_CLASS

D-3

D C++ Utility Library Reference

Utility Classes
The following are C++ utility classes:

• “mwString Class” on page D-5

• “mwException Class” on page D-21

• “mwArray Class” on page D-30

D-4

mwString Class

mwString Class

In this section...

“About mwString” on page D-5

“Constructors” on page D-5

“Methods” on page D-5

“Operators” on page D-5

About mwString
The mwString class is a simple string class used by the mwArray API to pass
string data as output from certain methods.

Constructors

• mwString()

• mwString(const char* str)

• mwString(const mwString& str)

Methods

• int Length() const

Operators

• operator const char* () const

• mwString& operator=(const mwString& str)

• mwString& operator=(const char* str)

• bool operator== [equal] (const mwString& str) const

• bool operator!= [not equal] (const mwString& str) const

• bool operator< [less than] (const mwString& str) const

D-5

D C++ Utility Library Reference

• bool operator<= [less than or equal] (const mwString& str)
const

• bool operator> [greater than] (const mwString& str) const

• bool operator>= [greater than or equal] (const mwString& str)
const

• friend std::ostream& operator<<(std::ostream& os, const
mwString& str)

D-6

mwString()

Purpose Construct empty string

C++
Syntax

#include "mclcppclass.h"
mwString str;

Arguments None

Return
Value

None

Description Use this constructor to create an empty string.

D-7

mwString(const char* str)

Purpose Construct new string and initialize strings data with supplied char
buffer

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");

Arguments str
NULL-terminated char buffer to initialize the string.

Return
Value

None

Description Use this constructor to create a string from a NULL-terminated char
buffer.

D-8

mwString(const mwString& str)

Purpose Copy constructor for mwString

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str(str); // new_str contains a copy of the

// characters in str.

Arguments str
mwString to be copied.

Return
Value

None

Description Use this constructor to create an mwString that is a copy of an existing
one. Constructs a new string and initializes its data with the supplied
mwString.

D-9

int Length() const

Purpose Return number of characters in string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
int len = str.Length(); // len should be 16.

Arguments None

Return
Value

The number of characters in the string.

Description Use this method to get the length of an mwString. The value returned
does not include the terminating NULL character.

D-10

operator const char* () const

Purpose Return pointer to internal buffer of string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
const char* pstr = (const char*)str;

Arguments None

Return
Value

A pointer to the internal buffer of the string.

Description Use this operator to get direct read-only access to the string’s data
buffer.

D-11

mwString& operator=(const mwString& str)

Purpose mwString assignment operator

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str = str; // new_str contains a copy of

// the data in str.

Arguments str
String to make a copy of.

Return
Value

A reference to the invoking mwString object.

Description Use this operator to copy the contents of one string into another.

D-12

mwString& operator=(const char* str)

Purpose mwString assignment operator

C++
Syntax

#include "mclcppclass.h"
const char* pstr = "This is a string";
mwString str = pstr; // str contains copy of data in pstr.

Arguments str
char buffer to make copy of.

Return
Value

A reference to the invoking mwString object.

Description Use this operator to copy the contents of a NULL-terminated buffer
into an mwString.

D-13

bool operator== [equal] (const mwString& str) const

Purpose Test two mwStrings for equality

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str == str2);// ret should have value of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for equality.

D-14

bool operator!= [not equal] (const mwString& str)
const

Purpose Test two mwStrings for inequality

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str != str2); // ret should have value of

// true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for inequality.

D-15

bool operator< [less than] (const mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically less than input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str < str2); // ret should have a value

// of true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

D-16

bool operator<= [less than or equal] (const mwString&
str) const

Purpose Compare input string with this string and return true if this string is
lexicographically less than or equal to input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str <= str2); // ret should have value

// of true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

D-17

bool operator> [greater than] (const mwString& str)
const

Purpose Compare input string with this string and return true if this string is
lexicographically greater than input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str > str2); // ret should have value

// of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

D-18

bool operator>= [greater than or equal] (const
mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically greater than or equal to input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str >= str2);//ret should have value of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

D-19

friend std::ostream& operator<<(std::ostream& os,
const mwString& str)

Purpose Copy contents of input string to specified ostream

C++
Syntax

#include "mclcppclass.h"
#include <ostream>
mwString str("This is a string");
std::cout << str << std::endl; //should print "This is a

//string" to standard out.

Arguments os
ostream to copy string to.

str
String to copy.

Return
Value

The input ostream.

Description Use this operator to print the contents of an mwString to an ostream.

D-20

mwException Class

mwException Class

In this section...

“About mwException” on page D-21

“Constructors” on page D-21

“Methods” on page D-21

“Operators” on page D-21

About mwException
The mwException class is the basic exception type used by the mwArray
API and the C++ interface functions. All errors created during calls to the
mwArray API and to MATLAB Compiler generated C++ interface functions
are thrown as mwExceptions.

Constructors

• mwException()

• mwException(const char* msg)

• mwException(const mwException& e)

• mwException(const std::exception& e)

Methods

• const char *what() const throw()

• void print_stack_trace()

Operators

• mwException& operator=(const mwException& e)

• mwException& operator=(const std::exception& e)

D-21

mwException()

Purpose Construct new mwException with default error message

C++
Syntax

#include "mclcppclass.h"
throw mwException();

Arguments None

Return
Value

None

Description Use this constructor to create an mwException without specifying an
error message.

D-22

mwException(const char* msg)

Purpose Construct new mwException with specified error message

C++
Syntax

#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

std::cout << e.what() << std::endl // Displays "This
// is an error" to
// standard out.

}

Arguments msg
Error message.

Return
Value

None

Description Use this constructor to create an mwException with a specified error
message.

D-23

mwException(const mwException& e)

Purpose Copy constructor for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments e
mwException to create copy of.

Return
Value

None

Description Use this constructor to create a copy of an mwException. The copy will
have the same error message as the original.

D-24

mwException(const std::exception& e)

Purpose Create new mwException from existing std::exception

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments e
std::exception to create copy of.

Return
Value

None

Description Use this constructor to create a new mwException and initialize the
error message with the error message from the given std::exception.

D-25

const char *what() const throw()

Purpose Return error message contained in this exception

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

std::cout << e.what() << std::endl; // Displays error
// message to
// standard out.

}

Arguments None

Return
Value

A pointer to a NULL-terminated character buffer containing the error
message.

Description Use this method to retrieve the error message from an mwException.

D-26

void print_stack_trace()

Purpose Prints stack trace to std::cerr

C++
Syntax

void print_stack_trace()

Arguments None

Return
Value

None

Description Use this method to print a stack trace, providing more debugging
information about a C++ exception.

D-27

mwException& operator=(const mwException& e)

Purpose Assignment operator for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const mwException& e)
{

mwException e2 = e;
throw e2;

}

Arguments e
mwException to create copy of.

Return
Value

A reference to the invoking mwException.

Description Use this operator to create a copy of an mwException. The copy will
have the same error message as the original.

D-28

mwException& operator=(const std::exception& e)

Purpose Assignment operator for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

mwException e2 = e;
throw e2;

}

Arguments e
std::exception to initialize copy with.

Return
Value

A reference to the invoking mwException.

Description Use this operator to create a copy of an std::exception. The copy will
have the same error message as the original.

D-29

D C++ Utility Library Reference

mwArray Class

In this section...

“About mwArray” on page D-30

“Constructors” on page D-30

“Methods” on page D-31

“Operators” on page D-32

“Static Methods” on page D-33

About mwArray
Use the mwArray class to pass input/output arguments to MATLAB Compiler
generated C++ interface functions. This class consists of a thin wrapper
around a MATLAB array. As explained in further detail in the MATLAB
documentation, all data in MATLAB is represented by matrices (in other
words, even a simple data structure should be declared as a 1-by-1 matrix).
The mwArray class provides the necessary constructors, methods, and
operators for array creation and initialization, as well as simple indexing.

Note Arithmetic operators, such as addition and subtraction, are no longer
supported as of Release 14.

Constructors

• mwArray()

• mwArray(mxClassID mxID)

• mwArray(mwSize num_rows, mwSize num_cols, mxClassID mxID,
mxComplexity cmplx = mxREAL)

• mwArray(mwSize num_dims, const mwSize* dims, mxClassID mxID,
mxComplexity cmplx = mxREAL)

• mwArray(const char* str)

• mwArray(mwSize num_strings, const char** str)

D-30

mwArray Class

• mwArray(mwSize num_rows, mwSize num_cols, int num_fields,
const char** fieldnames)

• mwArray(mwSize num_dims, const mwSize* dims, int num_fields,
const char** fieldnames)

• mwArray(const mwArray& arr)

• mwArray(<type> re)

• mwArray(<type> re, <type> im)

Methods

• mwArray Clone() const

• mwArray SharedCopy() const

• mwArray Serialize() const

• mxClassID ClassID() const

• int ElementSize() const

• size_t ElementSize() const

• mwSize NumberOfElements() const

• mwSize NumberOfNonZeros() const

• mwSize MaximumNonZeros() const

• mwSize NumberOfDimensions() const

• int NumberOfFields() const

• mwString GetFieldName(int index)

• mwArray GetDimensions() const

• bool IsEmpty() const

• bool IsSparse() const

• bool IsNumeric() const

• bool IsComplex() const

• bool Equals(const mwArray& arr) const

• int CompareTo(const mwArray& arr) const

D-31

D C++ Utility Library Reference

• int HashCode() const

• mwString ToString() const

• mwArray RowIndex() const

• mwArray ColumnIndex() const

• void MakeComplex()

• mwArray Get(mwSize num_indices, ...)

• mwArray Get(const char* name, mwSize num_indices, ...)

• mwArray Get(mwSize num_indices, const mwIndex* index)

• mwArray Get(const char* name, mwSize num_indices, const
mwIndex* index)

• mwArray Real()

• mwArray Imag()

• void Set(const mwArray& arr)

• void GetData(<numeric-type>* buffer, mwSize len) const

• void GetLogicalData(mxLogical* buffer, mwSize len) const

• void GetCharData(mxChar* buffer, mwSize len) const

• void SetData(<numeric-type>* buffer, mwSize len)

• void SetLogicalData(mxLogical* buffer, mwSize len)

• void SetCharData(mxChar* buffer, mwSize len)

Operators

• mwArray operator()(mwIndex i1, mwIndex i2, mwIndex i3, ...,)

• mwArray operator()(const char* name, mwIndex i1, mwIndex i2,
mwIndex i3, ...,)

• mwArray& operator=(const <type>& x)

• operator <type>() const

D-32

mwArray Class

Static Methods

• static mwArray Deserialize(const mwArray& arr)

• static double GetNaN()

• static double GetEps()

• static double GetInf()

• static bool IsFinite(double x)

• static bool IsInf(double x)

• static bool IsNaN(double x)

Static Factory Methods for Sparse Arrays

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxDouble* rData,
num_rows, num_cols, nzmax)

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxDouble* rdata,
nzmax)

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxDouble* rdata,
mxDouble* idata, num_rows, num_cols, nzmax)

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxDouble* rdata,
mxDouble* idata, mwsize, nzmax)

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxLogical* rdata,
num_rows, num_cols, nzmax)

• static mwArray NewSparse(rowindex_size, mwIndex* rowindex,
colindex_size, mwIndex* colindex, data_size, mxLogical* rData,
nzmax)

• static mwArray NewSparse (num_rows, num_cols, nzmax, mxClassID
mxID, mxComplexity cmplx = mxREAL)

D-33

mwArray()

Purpose Construct empty array of type mxDOUBLE_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a;

Return
Value

None

Description Use this constructor to create an empty array of type mxDOUBLE_CLASS.

D-34

mwArray(mxClassID mxID)

Purpose Construct empty array of specified type

C++
Syntax

#include "mclcppclass.h"
mwArray a(mxDOUBLE_CLASS);

Return
Value

None

Description Use this constructor to create an empty array of the specified type.
You can use any valid mxClassID. See the External Interfaces
documentation for more information on mxClassID.

D-35

mwArray(mwSize num_rows, mwSize num_cols,
mxClassID mxID, mxComplexity cmplx = mxREAL)

Purpose Construct 2-D matrix of specified type and dimensions

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(3, 3, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(2, 3, mxCELL_CLASS);

Arguments num_rows
The number of rows.

num_cols
The number of columns.

mxID
The data type type of the matrix.

cmplx
The complexity of the matrix (numeric types only).

Return
Value

None

Description Use this constructor to create a matrix of the specified type and
complexity. For numeric types, the matrix can be either real or complex.
You can use any valid mxClassID. Consult the External Interfaces
documentation for more information on mxClassID. For numeric types,
pass mxCOMPLEX for the last argument to create a complex matrix. All
elements are initialized to zero. For cell matrices, all elements are
initialized to empty cells.

D-36

mwArray(mwSize num_dims, const mwSize* dims,
mxClassID mxID, mxComplexity cmplx = mxREAL)

Purpose Construct n-dimensional array of specified type and dimensions

C++
Syntax

#include "mclcppclass.h"
mwSize dims[3] = {2,3,4};
mwArray a(3, dims, mxDOUBLE_CLASS);
mwArray b(3, dims, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(3, dims, mxCELL_CLASS);

Arguments num_dims
Size of the dims array.

dims
Dimensions of the array.

mxID
The data type type of the matrix.

cmplx
The complexity of the matrix (numeric types only).

Return
Value

None

Description Use this constructor to create an n-dimensional array of the specified
type and complexity. For numeric types, the array can be either real
or complex. You can use any valid mxClassID. Consult the External
Interfaces documentation for more information on mxClassID. For
numeric types, pass mxCOMPLEX for the last argument to create a
complex matrix. All elements are initialized to zero. For cell arrays, all
elements are initialized to empty cells.

D-37

mwArray(const char* str)

Purpose Construct character array from supplied string

C++
Syntax

#include "mclcppclass.h"
mwArray a("This is a string");

Arguments str
NULL-terminated string

Return
Value

None

Description Use this constructor to create a 1-by-n array of type mxCHAR_CLASS, with
n = strlen(str), and initialize the array’s data with the characters in
the supplied string.

D-38

mwArray(mwSize num_strings, const char** str)

Purpose Construct character matrix from list of strings

C++
Syntax

#include "mclcppclass.h"
const char* str[] = {"String1", "String2", "String3"};
mwArray a(3, str);

Arguments num_strings
Number of strings in the input array

str
Array of NULL-terminated strings

Return
Value

None

Description Use this constructor to create a matrix of type mxCHAR_CLASS, and
initialize the array’s data with the characters in the supplied strings.
The created array has dimensions m-by-max, where max is the length of
the longest string in str.

D-39

mwArray(mwSize num_rows, mwSize num_cols, int
num_fields, const char** fieldnames)

Purpose Construct 2-D MATLAB structure matrix of specified dimensions and
field names

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);

Arguments num_rows
Number of rows in the struct matrix.

num_cols
Number of columns in the struct matrix.

num_fields
Number of fields in the struct matrix.

fieldnames
Array of NULL-terminated strings representing the field names.

Return
Value

None

Description Use this constructor to create a matrix of type mxSTRUCT_CLASS, with
the specified field names. All elements are initialized with empty cells.

D-40

mwArray(mwSize num_dims, const mwSize* dims, int
num_fields, const char** fieldnames)

Purpose Construct n-dimensional MATLAB structure array of specified
dimensions and field names

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwSize dims[3] = {2, 3, 4}
mwArray a(3, dims, 3, fields);

Arguments num_dims
Size of the dims array.

dims
Dimensions of the struct array.

num_fields
Number of fields in the struct array.

fieldnames
Array of NULL-terminated strings representing the field names.

Return
Value

None

Description Use this constructor to create an n-dimensional array of type
mxSTRUCT_CLASS, with the specified field names. All elements are
initialized with empty cells.

D-41

mwArray(const mwArray& arr)

Purpose Constructs new mwArray from existing array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(a);

Arguments arr
mwArray to copy.

Return
Value

None

Description Use this constructor to create a copy of an existing array. The new
array contains a deep copy of the input array.

D-42

mwArray(<type> re)

Purpose Construct real scalar array of type of the input argument and initialize
data with input argument’s value

C++
Syntax

#include "mclcppclass.h"
double x = 5.0;
mwArray a(x); // Creates 1X1 double array with value 5.0

Arguments re
Scalar value to initialize array with.

Return
Value

None

Description Use this constructor to create a real scalar array. <type> can be any
of the following:

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

• mxUint64

• mxLogical

The scalar array is created with the type of the input argument.

D-43

mwArray(<type> re, <type> im)

Purpose Construct complex scalar array of type of input arguments and initialize
real and imaginary parts of data with input argument’s values

C++
Syntax

#include "mclcppclass.h"
double re = 5.0;
double im = 10.0;
mwArray a(re, im); // Creates 1X1 complex array with

// value 5+10i

Arguments re
Scalar value to initialize real part with.

im
Scalar value to initialize imaginary part with.

Return
Value

None

Description Use this constructor to create a complex scalar array. The first input
argument initializes the real part and the second argument initializes
the imaginary part. <type> can be any of the following: mxDouble,
mxSingle, mxInt8, mxUint8, mxInt16, mxUint16, mxInt32, mxUint32,
mxInt64, or mxUint64.

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

D-44

mwArray(<type> re, <type> im)

• mxUint64

• mxLogical

The scalar array is created with the type of the input arguments.

D-45

mwArray Clone() const

Purpose Return new array representing deep copy of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

Arguments None

Return
Value

New mwArray representing a deep copy of the original.

Description Use this method to create a copy of an existing array. The new array
contains a deep copy of the input array.

D-46

mwArray SharedCopy() const

Purpose Return new array representing shared copy of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

Arguments None

Return
Value

New mwArray representing a reference counted version of the original.

Description Use this method to create a shared copy of an existing array. The new
array and the original array both point to the same data.

D-47

mwArray Serialize() const

Purpose Serialize underlying array into byte array, and return data in new
array of type mxUINT8_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray s = a.Serialize();

Arguments None

Return
Value

New mwArray of type mxUINT8_CLASS containing the serialized data.

Description Use this method to serialize an array into bytes. A 1-by-n numeric
matrix of type mxUINT8_CLASS is returned containing the serialized
data. The data can be deserialized back into the original representation
by calling mwArray::Deserialize().

D-48

mxClassID ClassID() const

Purpose Return type of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();// Should return mxDOUBLE_CLASS

Arguments None

Return
Value

The mxClassID of the array.

Description Use this method to determine the type of the array. Consult the
External Interfaces documentation for more information on mxClassID.

D-49

int ElementSize() const

Purpose Return size in bytes of element of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();// Should return sizeof(double)

Arguments None

Return
Value

The size in bytes of an element of this type of array.

Description Use this method to determine the size in bytes of an element of array
type.

D-50

size_t ElementSize() const

Purpose Return size in bytes of element in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();// Should return sizeof(double)

Arguments None

Return
Value

The size in bytes of an element of this type of array.

Description Use this method to determine the size in bytes of an element of array
type.

D-51

mwSize NumberOfElements() const

Purpose Return number of elements in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();// Should return 4

Arguments None

Return
Value

Number of elements in array.

Description Use this method to determine the total size of the array.

D-52

mwSize NumberOfNonZeros() const

Purpose Return number of nonzero elements for sparse array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfNonZeros();// Should return 4

Arguments None

Return
Value

Actual number of nonzero elements in array.

Description Use this method to determine the size of the of the array’s data. If
the underlying array is not sparse, this returns the same value as
NumberOfElements().

Note This method does not analyze the actual values of the array
elements. Instead, it returns the number of elements that can
potentially be nonzero. This is exactly the number of elements for which
the sparse matrix has allocated storage.

D-53

mwSize MaximumNonZeros() const

Purpose Return maximum number of nonzero elements for sparse array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();// Should return 4

Arguments None

Return
Value

Number of allocated nonzero elements in array.

Description Use this method to determine the allocated size of the of the array’s
data. If the underlying array is not sparse, this returns the same value
as NumberOfElements().

Note This method does not analyze the actual values of the array
elements.

D-54

mwSize NumberOfDimensions() const

Purpose Return number of dimensions in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();// Should return 2

Arguments None

Return
Value

Number of dimensions in array.

Description Use this method to determine the dimensionality of the array.

D-55

int NumberOfFields() const

Purpose Return number of fields in struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields(); // Should return 3

Arguments None

Return
Value

Number of fields in the array.

Description Use this method to determine the number of fields in a struct array. If
the underlying array is not of type struct, zero is returned.

D-56

mwString GetFieldName(int index)

Purpose Return string representing name of (zero-based) field in struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
mwString tempname = a.GetFieldName(1);
const char* name = (const char*)tempname; // Should

// return "b"

Arguments Index
Zero-based field number.

Return
Value

mwString containing the field name.

Description Use this method to determine the name of a given field in a struct
array. If the underlying array is not of type struct, an exception is
thrown.

D-57

mwArray GetDimensions() const

Purpose Return array of type mxINT32_CLASS representing dimensions of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

Arguments None

Return
Value

mwArray type mxINT32_CLASS containing the dimensions of the array.

Description Use this method to determine the size of each dimension in the array.
The size of the returned array is 1-by-NumberOfDimensions().

D-58

bool IsEmpty() const

Purpose Return true if underlying array is empty

C++
Syntax

#include "mclcppclass.h"
mwArray a;
bool b = a.IsEmpty(); // Should return true

Arguments None

Return
Value

Boolean indicating if the array is empty.

Description Use this method to determine if an array is empty.

D-59

bool IsSparse() const

Purpose Return true if underlying array is sparse

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsSparse(); // Should return false

Arguments None

Return
Value

Boolean indicating if the array is sparse.

Description Use this method to determine if an array is sparse.

D-60

bool IsNumeric() const

Purpose Return true if underlying array is numeric

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsNumeric(); // Should return true.

Arguments None

Return
Value

Boolean indicating if the array is numeric.

Description Use this method to determine if an array is numeric.

D-61

bool IsComplex() const

Purpose Return true if underlying array is complex

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.IsComplex(); // Should return true.

Arguments None

Return
Value

Boolean indicating if the array is complex.

Description Use this method to determine if an array is complex.

D-62

bool Equals(const mwArray& arr) const

Purpose Test two arrays for equality

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
bool c = a.Equals(b); // Should return true.

Arguments arr
Array to compare to array.

Return
Value

Boolean value indicating the equality of the two arrays.

Description Returns true if the input array is byte-wise equal to this array. This
method makes a byte-wise comparison of the underlying arrays.
Therefore, arrays of the same type should be compared. Arrays of
different types will not in general be equal, even if they are initialized
with the same data.

D-63

int CompareTo(const mwArray& arr) const

Purpose Compare two arrays for order

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
int n = a.CompareTo(b); // Should return 0

Arguments arr
Array to compare to this array.

Return
Value

Returns a negative integer, zero, or a positive integer if this array is
less than, equal to, or greater than the specified array.

Description Compares this array with the specified array for order. This method
makes a byte-wise comparison of the underlying arrays. Therefore,
arrays of the same type should be compared. Arrays of different types
will, in general, not be ordered equivalently, even if they are initialized
with the same data.

D-64

int HashCode() const

Purpose Return hash code for array

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

Arguments None

Return
Value

An integer value representing a unique hash code for the array.

Description This method constructs a unique hash value form the underlying bytes
in the array. Therefore, arrays of different types will have different
hash codes, even if they are initialized with the same data.

D-65

mwString ToString() const

Purpose Return string representation of underlying array

C++
Syntax

#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real() = 1.0;
a.Imag() = 2.0;
printf("%s\n", (const char*)(a.ToString()));// Should print

// "1 + 2i" on
// screen.

Arguments None

Return
Value

An mwString containing the string representation of the array.

Description This method returns a string representation of the underlying array.
The string returned is the same string that is returned by typing a
variable’s name at the MATLAB command prompt.

D-66

mwArray RowIndex() const

Purpose Return array containing row indices of each element in array

C++
Syntax

#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.RowIndex();

Arguments None

Return
Value

An mwArray containing the row indices.

Description Returns an array of type mxINT32_CLASS representing the row indices
(first dimension) of this array. For sparse arrays, the indices are
returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the row indices
of all of the elements are returned.

D-67

mwArray ColumnIndex() const

Purpose Return array containing column indices of each element in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.ColumnIndex();

Arguments None

Return
Value

An mwArray containing the column indices.

Description Returns an array of type mxINT32_CLASS representing the column
indices (second dimension) of this array. For sparse arrays, the indices
are returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the column
indices of all of the elements are returned.

D-68

void MakeComplex()

Purpose Convert real numeric array to complex

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.MakeComplex();
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

None

Description Use this method to convert a numeric array that has been previously
allocated as real to complex. If the underlying array is of a nonnumeric
type, an mwException is thrown.

D-69

mwArray Get(mwSize num_indices, ...)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1,1); // x = 1.0
x = a.Get(2, 1, 2); // x = 3.0
x = a.Get(2, 2, 2); // x = 4.0

Arguments num_indices
Number of indices passed in.

...
Comma-separated list of input indices. Number of items must
equal num_indices but should not exceed 32.

Return
Value

An mwArray containing the value at the specified index.

Description Use this method to fetch a single element at a specified index. The
index is passed by first passing the number of indices followed by
a comma-separated list of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

D-70

mwArray Get(const char* name, mwSize num_indices,
...)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};

mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, 1); // b=a(1).a;
mwArray b = a.Get("b", 2, 1, 1); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

num_indices
Number of indices passed in.

...
Comma-separated list of input indices. Number of items must
equal num_indices.

Return
Value

An mwArray containing the value at the specified field name and index.

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of
type mxSTRUCT_CLASS. An mwException is thrown if the underlying
array is not a struct array. The field name passed must be a valid
field name in the struct array. The index is passed by first passing
the number of indices followed by a comma-separated list of 1-based
indices. The valid number of indices that can be passed in is either 1
(single subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case,
the index list is used to access the specified element. The valid range
for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the
valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An

D-71

mwArray Get(const char* name, mwSize num_indices,
...)

mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

D-72

mwArray Get(mwSize num_indices, const mwIndex*
index)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
int index[2] = {1, 1};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1, index); // x = 1.0
x = a.Get(2, index); // x = 1.0
index[0] = 2;
index[1] = 2;
x = a.Get(2, index); // x = 4.0

Arguments num_indices
Size of index array.

index
Array of at least size num_indices containing the indices.

Return
Value

An mwArray containing the value at the specified index.

Description Use this method to fetch a single element at a specified index. The
index is passed by first passing the number of indices, followed by an
array of 1-based indices. The valid number of indices that can be passed
in is either 1 (single subscript indexing), in which case the element at
the specified 1-based offset is returned, accessing data in column-wise
order, or NumberOfDimensions() (multiple subscript indexing), in
which case, the index list is used to access the specified element. The
valid range for indices is 1 <= index <= NumberOfElements(), for
single subscript indexing. For multiple subscript indexing, the ith index
has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

D-73

mwArray Get(const char* name, mwSize num_indices,
const mwIndex* index)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, index); // b=a(1).a;
mwArray b = a.Get("b", 2, index); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

num_indices
Number of indices passed in.

index
Array of at least size num_indices containing the indices.

Return
Value

An mwArray containing the value at the specified field name and index.

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of type
mxSTRUCT_CLASS. An mwException is thrown if the underlying array is
not a struct array. The field name passed must be a valid field name
in the struct array. The index is passed by first passing the number
of indices followed by an array of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is

D-74

mwArray Get(const char* name, mwSize num_indices,
const mwIndex* index)

thrown if an invalid number of indices is passed in or if any index is
out of bounds.

D-75

mwArray Real()

Purpose Return mwArray that references real part of complex array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

An mwArray referencing the real part of the array.

Description Use this method to access the real part of a complex array. The returned
mwArray is considered real and has the same dimensionality and type
as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where
N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB functions Real and Imag can be applied to an array of
Complex numbers. These functions extract the corresponding part of
the Complex number. For example, REAL(3,5i) == 3 and IMAG(3+5i)
== 5. Imag returns 5 in this case and not 5i. Imag returns the
magnitude of the imaginary part of the number as a real number.

D-76

mwArray Imag()

Purpose Return mwArray that references imaginary part of complex array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

An mwArray referencing the imaginary part of the array.

Description Use this method to access the imaginary part of a complex array. The
returned mwArray is considered real and has the same dimensionality
and type as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where
N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB functions Real and Imag can be applied to an array of
Complex numbers. These functions extract the corresponding part of
the Complex number. For example, REAL(3,5i) == 3 and IMAG(3+5i)
== 5. Imag returns 5 in this case and not 5i. Imag returns the
magnitude of the imaginary part of the number as a real number.

D-77

void Set(const mwArray& arr)

Purpose Assign shared copy of input array to currently referenced cell for arrays
of type mxCELL_CLASS and mxSTRUCT_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a); // Sets c(1) = a
c.Get(1,2).Set(b); // Sets c(2) = b

Arguments arr
mwArray to assign to currently referenced cell.

Return
Value

None

Description Use this method to construct cell and struct arrays.

D-78

void GetData(<numeric-type>* buffer, mwSize len)
const

Purpose Copy array’s data into supplied numeric buffer

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description Valid types for <numeric-type> are:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

D-79

void GetData(<numeric-type>* buffer, mwSize len) const

The data is copied in column-major order. If the underlying array is not
of the same type as the input buffer, the data is converted to this type as
it is copied. If a conversion cannot be made, an mwException is thrown.

D-80

void GetLogicalData(mxLogical* buffer, mwSize len)
const

Purpose Copy array’s data into supplied mxLogical buffer

C++
Syntax

#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

D-81

void GetCharData(mxChar* buffer, mwSize len) const

Purpose Copy array’s data into supplied mxChar buffer

C++
Syntax

#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

D-82

void SetData(<numeric-type>* buffer, mwSize len)

Purpose Copy data from supplied numeric buffer into array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description Valid types for <numeric-type> are mxDOUBLE_CLASS, mxSINGLE_CLASS,
mxINT8_CLASS, mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS,
mxINT32_CLASS, mxUINT32_CLASS, mxINT64_CLASS, and
mxUINT64_CLASS. The data is copied in column-major order. If the
underlying array is not of the same type as the input buffer, the data is
converted to this type as it is copied. If a conversion cannot be made,
an mwException is thrown.

D-83

void SetLogicalData(mxLogical* buffer, mwSize len)

Purpose Copy data from supplied mxLogical buffer into array

C++
Syntax

#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

D-84

void SetCharData(mxChar* buffer, mwSize len)

Purpose Copy data from supplied mxChar buffer into array

C++
Syntax

#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , 'l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

D-85

mwArray operator()(mwIndex i1, mwIndex i2,
mwIndex i3, ...,)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a(1,1); // x = 1.0
x = a(1,2); // x = 3.0
x = a(2,2); // x = 4.0

Arguments i1, i2, i3, ...,
Comma-separated list of input indices.

Return
Value

An mwArray containing the value at the specified index.

Description Use this operator to fetch a single element at a specified index.
The index is passed as a comma-separated list of 1-based indices.
This operator is overloaded to support 1 through 32 indices. The
valid number of indices that can be passed in is either 1 (single
subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case,
the index list is used to access the specified element. The valid range
for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the
valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An
mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

D-86

mwArray operator()(const char* name, mwIndex i1,
mwIndex i2, mwIndex i3, ...,)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a("a", 1, 1); // b=a(1).a;
mwArray b = a("b", 1, 1); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

i1, i2, i3, ...,
Comma-separated list of input indices.

Return
Value

An mwArray containing the value at the specified field name and index

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of type
mxSTRUCT_CLASS. An mwException is thrown if the underlying array is
not a struct array. The field name passed must be a valid field name
in the struct array. The index is passed by first passing the number
of indices, followed by an array of 1-based indices. This operator is
overloaded to support 1 through 32 indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

D-87

mwArray& operator=(const <type>& x)

Purpose Assign single scalar value to array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
a(1,1) = 1.0; // assigns 1.0 to element (1,1)
a(1,2) = 2.0; // assigns 2.0 to element (1,2)
a(2,1) = 3.0; // assigns 3.0 to element (2,1)
a(2,2) = 4.0; // assigns 4.0 to element (2,2)

Arguments x
Value to assign.

Return
Value

A reference to the invoking mwArray.

Description Use this operator to set a single scalar value. This operator is
overloaded for all numeric and logical types.

D-88

operator <type>() const

Purpose Fetch single scalar value from array

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = (double)a(1,1); // x = 1.0
x = (double)a(1,2); // x = 3.0
x = (double)a(2,1); // x = 2.0
x = (double)a(2,2); // x = 4.0

Arguments None

Return
Value

A single scalar value from the array.

Description Use this operator to fetch a single scalar value. This operator is
overloaded for all numeric and logical types.

D-89

static mwArray Deserialize(const mwArray& arr)

Purpose Deserialize array that was serialized with mwArray::Serialize

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(1,4,mxDOUBLE_CLASS);
a.SetData(rdata, 4);
mwArray b = a.Serialize();
a = mwArray::Deserialize(b);// a should contain same

// data as original

Arguments arr
mwArray that has been obtained by calling mwArray::Serialize.

Return
Value

A new mwArray containing the deserialized array.

Description Use this method to deserialize an array that has been serialized
with mwArray::Serialize(). The input array must be of type
mxUINT8_CLASS and contain the data from a serialized array. If the
input data does not represent a serialized mwArray, the behavior of
this method is undefined.

D-90

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rData, num_rows, num_cols,
nzmax)

Purpose Creates real sparse matrix of type double with specified number of
rows and columns.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxDouble* rData,
mwSize num_rows,
mwSize num_cols,
mwSize nzmax)

Arguments Inputs

rowindex_size
Size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
size of data array(s).

rData
Data associated with non-zero row and column indices.

num_rows
Number of rows in matrix.

num_cols
Number of columns in matrix.

D-91

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxDouble* rData, num_rows, num_cols, nzmax)

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

Outputs

mwArray
mwArray containing the sparse array.

Description The lengths of input row, column index, and data arrays must all be the
same or equal to 1. In the case where any of these arrays are equal to 1,
the value is repeated throughout the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows or num_cols respectively, an exception is
thrown.

Example This example constructs a sparse 4 X 4 tridiagonal matrix:

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

The following code, when run:

double rdata[] =
{2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0};

mwIndex row_tridiag[] =
{1, 2, 1, 2, 3,
2, 3, 4, 3, 4 };

mwIndex col_tridiag[] =
{1, 1, 2, 2, 2,

3, 3, 3, 4, 4 };

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

D-92

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rData, num_rows, num_cols,
nzmax)

10, col_tridiag,
10, rdata, 4, 4, 10);

std::cout << mysparse << std::endl;

will display the following output to the screen:

(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2

D-93

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxDouble* rdata, nzmax)

Purpose Creates real sparse matrix of type double with number of rows and
columns inferred (not explicitly specified) from input data.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxDouble* rData,
mwSize nzmax)

Arguments Inputs

rowindex_size
Size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
Size of data array(s).

rData
Data associated with non-zero row and column indices.

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

Outputs

mwArray
mwArray containing the sparse array

D-94

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rdata, nzmax)

Description The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows =
max{rowindex}, num_cols = max{colindex}.

Example 1 This example uses the data from the example for creating a real sparse
matrix of type double with specified number of rows and columns, but
allows the number of rows, number of columns , and allocated storage
to be calculated from the input data:

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
10, rdata,
0);

std::cout << mysparse << std::endl;

(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4)

Example 2 In this example, we construct a sparse 4 X 4 identity matrix. The value
of 1.0 is copied to each non-zero element defined by row and column
index arrays:

D-95

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxDouble* rdata, nzmax)

double one = 1.0;
mwIndex row_diag[] = {1, 2, 3, 4};
mwIndex col_diag[] = {1, 2, 3, 4};

mwArray mysparse =
mwArray::NewSparse(4, row_diag,

4, col_diag,
1, &one,
0);

std::cout << mysparse << std::endl;

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1

D-96

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rdata, mxDouble* idata,
num_rows, num_cols, nzmax)

Purpose Creates complex sparse matrix of type double with specified number of
rows and columns.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxDouble* rData,
const mxDouble* iData,
mwSize num_rows,
mwSize num_cols, mwSize
nzmax)

Arguments Inputs

rowindex_size
size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
Size of data array(s).

rData
Real part of data associated with non-zero row and column indices.

iData
Imaginary part of data associated with non-zero row and column
indices.

num_rows
Number of rows in matrix.

D-97

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxDouble* rdata, mxDouble* idata, num_rows,
num_cols, nzmax)

num_cols
Number of columns in matrix.

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

Outputs

mwArray
mwArray containing the sparse array

Description The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows, num_cols, respectively, then an exception
is thrown.

Example This example constructs a complex tridiagonal matrix:

double rdata[] =
{2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0};

double idata[] =
{20.0, -10.0, -10.0, 20.0, -10.0, -10.0, 20.0, -10.0,

-10.0, 20.0};
mwIndex row_tridiag[] =

{1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
mwIndex col_tridiag[] =

{1, 1, 2, 2, 2, 3, 3, 3, 4, 4};

mwArray mysparse = mwArray::NewSparse(10, row_tridiag,
10, col_tridiag,
10, rdata,
idata, 4, 4, 10);

std::cout << mysparse << std::endl;

D-98

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rdata, mxDouble* idata,
num_rows, num_cols, nzmax)

It displays the following output to the screen:

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i
(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

D-99

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxDouble* rdata, mxDouble* idata, mwsize, nzmax)

Purpose Creates complex sparse matrix of type double with number of rows and
columns inferred (not explicitly specified) from input data.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxDouble* rData,
const mxDouble* iData,
mwSize nzmax)

Arguments Inputs

rowindex_size
Size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
Size of data array(s).

rData
Data associated with non-zero row and column indices.

IData
Imaginary part of data associated with non-zero row and column
indices.

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

D-100

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxDouble* rdata, mxDouble* idata,
mwsize, nzmax)

Outputs

mwArray
mwArray containing the sparse array.

Description The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows =
max{rowindex}, num_cols = max{colindex}.

Example This example constructs a complex matrix by inferring dimensions and
storage allocation from the input data. The matrix used is taken from
the example that creates a complex sparse matrix of type double with a
specified number of rows and columns.

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
10, rdata, idata,
0);

std::cout << mysparse << std::endl;

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i
(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

D-101

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxLogical* rdata, num_rows, num_cols, nzmax)

Purpose Creates logical sparse matrix with specified number of rows and
columns.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxLogical* rData,
mwSize num_rows,
mwSize num_cols,
mwSize nzmax)

Arguments Inputs

rowindex_size
Size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
Size of data array(s).

rData
Data associated with non-zero row and column indices.

num_rows
Number of rows in matrix.

num_cols
Number of columns in matrix.

D-102

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxLogical* rdata, num_rows, num_cols,
nzmax)

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

Outputs

mwArray
mwArray containing the sparse array.

Description The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated throughout the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows, num_cols, respectively, then an exception
is thrown.

Example This example creates a sparse logical 4 X 4 tridiagonal matrix, assigning
true to each non-zero value:

mxLogical one = true;
mwIndex row_tridiag[] =

{1, 2, 1, 2, 3,
2, 3, 4, 3, 4};

mwIndex col_tridiag[] =
{1, 1, 2, 2, 2,
3, 3, 3, 4, 4};

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
1, &one,
4, 4, 10);

std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1

D-103

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxLogical* rdata, num_rows, num_cols, nzmax)

(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

D-104

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex,

data_size, mxLogical* rData, nzmax)

Purpose Creates logical sparse matrix with number of rows and columns inferred
(not explicitly specified) from input data.

C++
Signature

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex,
mwSize colindex_size,
const mwIndex* colindex,
mwSize data_size,
const mxLogical* rData,
mwSize nzmax)

Arguments Inputs

rowindex_size
Size of rowindex array.

rowindex
Array of row indices of non-zero elements.

colindex_size
Size of colindex array.

colindex
Array of column indices of non-zero elements.

data_size
Size of data array(s).

rData
Data associated with non-zero row and column indices.

nzmax
Reserved storage for sparse matrix. If nzmax is zero, storage will
be set to max{rowindex_size, colindex_size, data_size}.

Outputs

mwArray
mwArray containing the sparse array.

D-105

static mwArray NewSparse(rowindex_size, mwIndex*
rowindex, colindex_size, mwIndex* colindex, data_size,
mxLogical* rData, nzmax)

Description The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows = max
{rowindex}, num_cols = max {colindex}.

Example This example uses the data from the first example, but allows the
number of rows, number of columns, and allocated storage to be
calculated from the input data:

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
1, &one,
0);

std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1
(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

D-106

static mwArray NewSparse (num_rows, num_cols,
nzmax, mxClassID mxID, mxComplexity cmplx =

mxREAL)

Purpose Creates an empty sparse matrix

C++
Signature

static mwArray NewSparse (mwSize num_rows,
mwSize num_cols,
mwSize nzmax,
mxClassID mxID,
mxComplexity cmplx = mxREAL)

Arguments Inputs

num_rows
Number of rows in matrix.

num_cols
Number of columns in matrix.

nzmax
Reserved storage for sparse matrix.

mxID
Type of data to store in matrix. Currently, sparse matrices
of type double precision and logical are supported. Pass
mxDOUBLE_CLASS to create a double precision sparse matrix. Pass
mxLOGICAL_CLASS to create a logical sparse matrix.

cmplx
Optional. Complexity of matrix. Pass mxCOMPLEX to create
a complex sparse matrix and mxREAL to create a real sparse
matrix. This argument may be omitted, in which case the default
complexity is real.

Outputs

mwArray
mwArray containing the sparse array.

Description This method returns an empty sparse matrix. All elements in an empty
sparse matrix are initially zero, and the amount of allocated storage for
non-zero elements is specified by nzmax.

D-107

static mwArray NewSparse (num_rows, num_cols,
nzmax, mxClassID mxID, mxComplexity cmplx =
mxREAL)

Example This example constructs a real 3 X 3 empty sparse matrix of type
double with reserved storage for 4 non-zero elements:

mwArray mysparse = mwArray::NewSparse
(3, 3, 4, mxDOUBLE_CLASS);

std::cout << mysparse << std::endl;

All zero sparse: 3-by-3

D-108

static double GetNaN()

Purpose Get value of NaN (Not-a-Number)

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetNaN();

Arguments None

Return
Value

The value of NaN (Not-a-Number) on your system.

Description Call mwArray::GetNaN to return the value of NaN for your system. NaN
is the IEEE arithmetic representation for Not-a-Number. Certain
mathematical operations return NaN as a result, for example:

• 0.0/0.0

• Inf-Inf

The value of NaN is built in to the system; you cannot modify it.

D-109

static double GetEps()

Purpose Get value of eps

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetEps();

Arguments None

Return
Value

The value of the MATLAB eps variable.

Description Call mwArray::GetEps to return the value of the MATLAB eps variable.
This variable is the distance from 1.0 to the next largest floating-point
number. Consequently, it is a measure of floating-point accuracy. The
MATLAB pinv and rank functions use eps as a default tolerance.

D-110

static double GetInf()

Purpose Get value of Inf (infinity)

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetInf();

Arguments None

Return
Value

The value of Inf (infinity) on your system.

Description Call mwArray::GetInf to return the value of the MATLAB internal Inf
variable. Inf is a permanent variable representing IEEE arithmetic
positive infinity. The value of Inf is built into the system; you cannot
modify it.

Operations that return Inf include

• Division by 0. For example, 5/0 returns Inf.

• Operations resulting in overflow. For example, exp(10000) returns
Inf because the result is too large to be represented on your machine.

D-111

static bool IsFinite(double x)

Purpose Test if value is finite and return true if value is finite

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsFinite(1.0); // Returns true

Arguments Value to test for finiteness.

Return
Value

Result of test.

Description Call mwArray::IsFinite to determine whether or not a value is finite.
A number is finite if it is greater than -Inf and less than Inf.

D-112

static bool IsInf(double x)

Purpose Test if value is infinite and return true if value is infinite

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsInf(1.0); // Returns false

Arguments Value to test for infinity.

Return
Value

Result of test.

Description Call mwArray::IsInf to determine whether or not a value is equal to
infinity or minus infinity. MATLAB stores the value of infinity in a
permanent variable named Inf, which represents IEEE arithmetic
positive infinity. The value of the variable, Inf, is built into the system;
you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine. If the value equals NaN (Not-a-Number), then mxIsInf
returns false. In other words, NaN is not equal to infinity.

D-113

static bool IsNaN(double x)

Purpose Test if value is NaN (Not-a-Number) and return true if value is NaN

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsNaN(1.0); // Returns false

Arguments Value to test for NaN.

Return
Value

Result of test.

Description Call mwArray::IsNaN to determine whether or not the value is NaN.
NaN is the IEEE arithmetic representation for Not-a-Number. NaN is
obtained as a result of mathematically undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In
other words, NaN is not a single value, rather it is a family of numbers
that the MATLAB software (and other IEEE-compliant applications)
use to represent an error condition or missing data.

D-114

Index

IndexSymbols and Numerics
64-bit Macintosh applications

launching B-18
launching from bundle B-18

A
Accessibility

DLLs to add to path enabling 11-2
addpath command 4-14
Addressing

Extended
2 GB Limit 8-3

Advanced Encryption Standard (AES)
cryptosystem 3-8

ANSI compiler
installing 2-2

application
POSIX main 6-11

Applications
running with the Mac Application

Launcher B-15
Architectural compatibility

32-bit and 64-bit 1-6
Architectures

32-bit and 64-bit 1-6
64-bit and 32-bit compatibility 1-11

Assistive technologies
DLLs to add to path enabling 11-2

axes objects 10-5

B
build process 3-4

C
C

interfacing to MATLAB code 6-4
shared library wrapper 6-12

C code
Combining with MATLAB code 7-12

C++
interfacing to MATLAB code 6-4
library wrapper 6-12
primitive types D-3
utility classes D-4

C++ code
Combining with MATLAB code 7-12

C++ shared libraries D-33
sparse arrays D-33
working with sparse arrays 8-24

C/C++
compilers

supported on UNIX 2-3
supported on Windows 2-3

callback problems
fixing 10-3

callback strings
searching MATLAB files for 10-5

code
porting 5-15

command line
differences between command-line and

GUI 3-4
compilation path 4-14
Compile 1-3
Compiler

license 11-8
MATLAB files 1-3
MEX-files 1-3
security 3-8

compilers
supported on UNIX 2-3
supported on Windows 2-3

compiling
complete syntactic details 12-21
shared library quick start 4-6

Component Technology File (CTF) 3-8
compopts.bat 2-10

Index-1

Index

configuring
using mbuild 2-7

conflicting options
resolving 6-3

CTF (Component Technology File) archive 3-8
determining files to include 4-14
extracting without executing 5-15

CTF Archive
Controlling management and storage

of. 6-14
Embedding in component 6-14

CTF file 3-8

D
debugging 6-25

-G option flag 12-32
Dependency Analysis Function 3-4 3-7
depfun 3-4 3-7
deployed applications

troubleshooting 9-21
deploying applications that call Java™ native

libraries 6-25
deploying components

from a network drive 5-44
deploying GUIs with ActiveX controls 6-24
deploying recompiled applications 5-26
deploying to different platforms 5-15
deployment 5-2
Deployment B-1
Deployment Tool

differences between command-line and
GUI 3-4

Starting from the command line 4-6 12-7
deployprint function 12-5
deploytool

differences between command-line and
GUI 3-4

quick start 1-13
deploytool function 12-7

directory
user profile 2-10

DLL. See shared library 8-2
DLLs 3-8

depfun 3-8
double-clickable application

passing arguments 6-28

E
error messages

compile-time C-2
Compiler C-2
depfun C-10
internal error C-2
warnings C-7

export list 6-12
extractCTF utility 5-16
extracting

CTF archive without executing 5-15

F
feval 12-2

using 6-17
feval pragma 12-2
.fig file

locating in deployed applications 6-25
figure objects 10-5
Figures

Keeping open by blocking execution of
console application 6-25

Terminating by force 6-25
file extensions 6-3
files

wrapper 1-5
function

calling from command line 6-23
calling from MATLAB code 6-4
comparison to scripts 6-20

Index-2

Index

unsupported in standalone mode 10-10
wrapper 6-11

%#function 12-2
using 6-17

function MATLAB file 6-20
functions

unsupported 10-10

G
-G option flag 12-32
getmcruserdata function 12-11
GUI

compiling with ActiveX controls 6-24
deploying

as shared library 6-28
displaying 6-28

H
Handle Graphics 10-5

I
input/output files 4-8

C shared library 4-9
C++ shared library 4-11
Macintosh 4-13
standalone 4-8

Installation 2-5
installation area B-15 B-17

modifying the B-17
interfacing

MATLAB code to C/C++ code 6-4
internal error C-2
isdeployed 9-18 12-13
ismcc 12-14

J
Java™ native libraries

deploying applications that call 6-25

L
lcc compiler

limitations of 2-3
lcccompp.bat file 2-9
libraries

overview 4-6
library

shared C/C++ 8-2
wrapper 6-12

<library>Initialize[WithHandlers] 12-12
<library>Terminate 12-72
license problem 9-17 11-9
licensing 11-8
Lingering License

MATLAB Compiler use of 11-8
Linking

and mbuild
Static only 2-7

Load function 3-21
loadlibrary

(MATLAB function)
error messages 9-17
Use of 3-19

locating
.fig files in deployed applications 6-25

M
-M option flag 12-37
Mac Deployment B-1
Mac OS X

using shared library 8-23
Macintosh Application Launcher installation

area
configuring the B-15

Macintosh Application Launcher preference
pane B-15

Index-3

Index

macros 6-5
main program 6-11
main wrapper 6-11
.mat file

How to use with compiled applications 3-21
MAT file

How to explicitly include in depfun
analysis 3-21

How to force MATLAB Compiler to inspect
for dependencies 3-21

How to use with compiled applications 3-21
MAT-files in deployed applications 6-24
MATLAB code

Combining with C or C++ Code 7-12
MATLAB Compiler

build process 3-4
Building on Mac or Linux B-10
Compiling on Mac or Linux B-10
Deploying on B-12
error messages C-2
Example of deploying with 1-13
flags 6-2
Installing on Mac or Linux B-3
Licensing terms for applications built with

trial licence 10-9
Licensing terms for compiled

applications 10-9
Macintosh Applications B-15
macro 6-5
options 6-2

by task functionality A-8
listed alphabetically A-4

syntax 12-21
system requirements

UNIX 2-2
Testing on Mac or Linux B-11
troubleshooting 9-17
Using with Mac and Linux B-1
warning messages C-2

MATLAB Compiler applications

composed of binaries and archive 1-5
relation to CTF archive 1-5

MATLAB Compiler license 11-8
MATLAB Compiler Runtime

definition of 1-6
installed on system with no display B-14

MATLAB Compiler Runtime (MCR)
defined 1-36

MATLAB Component Runtime (MCR)
Administrator Privileges, requirement

of 1-37
Version Compatibility with MATLAB 1-37

MATLAB data files 3-21
MATLAB file

encrypting 3-8
function 6-20
script 6-20
searching for callback strings 10-5

MATLAB Function Signatures
Application Deployment product processing

of 3-17
MATLAB® Compiler™

Building a Component 1-17 1-27
MATLAB® Compiler™ Runtime (MCR) 5-17
matrixdriver

on Mac OS X 8-23
mbuild 2-7

options 12-15
troubleshooting 9-15
when not needed 2-7
when not to use 2-7

mcc 12-21
differences between command-line and

GUI 3-4
Overview 6-2
syntax 6-2

mclGetLogFileName 12-53 to 12-54
mclInitializeApplication 12-55
mclIsJVMEnabled 12-58
mclIsMCRInitialized 12-59

Index-4

Index

mclIsNoDisplaySet 12-60
MCLMCRRT Proxy Layer 8-7 8-19
mclmcrrt.lib

linking to 8-7 8-19
mclRunMain function 12-61
mclTerminateApplication 12-63
mclWaitForFiguresToDie 6-25
mclWaitForFiguresToDie function 12-65
MCR 1-36

installed on system with no display B-14
MCR (MATLAB® Compiler™ Runtime) 5-17

installing
multiple MCRs on same machine 5-25
on deployment machine 5-10
with MATLAB® on same machine 5-24

instance 8-13
options 8-13

MCR Component Cache
How to use

Overriding CTF embedding 6-14
MCR initialization

start-up and completion user messages 5-35
MCR Installer 1-36

and setting system paths 1-38
Including with deployment package 1-37
Installing on B-12

Memory Cleanup 8-37
Memory Management 8-37
MEX-files 3-4 3-7 to 3-8

depfun 3-8
Microsoft Visual C++ 2-3
mlx interface function 8-31
MSVC. See Microsoft Visual C++ 2-3
msvc100compp.bat file 2-9
msvc60compp.bat file 2-9
msvc80compp.bat file 2-9
msvc90compp.bat file 2-9
MWArray

Limitations in working with 10-8
MWComponentOptions 6-14

MX_COMPAT_32_OFF 8-3
mxArrays

Passing to shared libraries 8-37

N
network drive

deploying from 5-44
newsparse D-33
newsparse array 8-24

O
objects (Handle Graphics) 10-5
options 6-2

combining 6-2
grouping 6-2
macros 6-5
resolving conflicting 6-3
specifying 6-2

options file 2-10
changing 2-11
locating 2-10
modifying on

UNIX 2-12
Windows 2-11

UNIX 2-10
Windows 2-9

P
Parallel Computing Toolbox

Compiling and deploying a shared
library 5-43

Compiling and deploying a standalone
application 5-37 5-40

Passing Profile at runtime 5-37
Passing profile in CTF archive 5-40

pass through
-M option flag 12-37

passing

Index-5

Index

arguments to standalone applications 6-26
path

user interaction 4-14
-I option 4-14
-N and -p 4-14

porting code 5-15
POSIX main application 6-11
POSIX main wrapper 6-11
pragma

feval 12-2
%#function 12-2

primitive types D-3

Q
quick start

compiling a shared library 4-6
quotation marks

with mcc options 6-10
quotes

with mcc options 6-10

R
Resizing MWArrays

Limitations on 10-8
resolving

conflicting options 6-3
rmpath 4-14
Running Linux Applications

Without display console B-14
Without X-Windows B-14
Without X11 B-14

S
Save function 3-21
script file 6-20

including in deployed applications 6-21
script MATLAB file 6-20

converting to function MATLAB files 6-20

security 3-8
SETDATA (C++)

Limitations on 10-8
setmcruserdata function 12-71
shared libraries 3-8

depfun 3-8
shared library 3-8 8-4

calling structure 8-27
header file 6-12
using on Mac OS X 8-23
wrapper 6-12

Shared Library
Creating 1-17 1-27
Example of creating 1-13

sparse arrays 8-24 D-33
Standalone application

Creating 1-17
Example of creating 1-13

standalone application. See wrapper file 1-5
standalone applications 7-1

passing arguments 6-26
restrictions on 10-10
restrictions on Compiler 2.3 10-10

Standalone Applications
Running

Using arguments 7-9
Working with arguments and 7-8

Standalone executable
Example of creating 1-13

Standalone Executables
Passing file names to 7-8
Passing letters to 7-8
Passing MATLAB variables to 7-8
Passing matrices to 7-8
Passing numbers to 7-8
Working with arguments and 7-8

Standalones
Working with arguments and 7-8

System paths 1-38
setting of 1-38

Index-6

Index

System Preferences area B-15
system requirements 2-2

T
thread safe

Driver applications 8-7
thread safety

Ensuring, in driver applications 8-7
troubleshooting

Compiler problems 9-17
deployed applications 9-21
mbuild problems 9-15
missing functions 10-3

U
uicontrol objects 10-5
uimenu objects 10-5
UNIX

options file 2-10
locating 2-11

supported compilers 2-3
system requirements 2-2

unsupported functions 10-10
user messages

customizable 5-35
User Preferences area B-15

user profile directory 2-10

V
varargin 8-33
varargout 8-33

W
WaitForFiguresToDie 6-28
warning message

Compiler C-2
Windows

options file 2-9
locating 2-10

Windows standalones
difference from console application 4-2
differences from standalone application 4-2

winopen
calling in a deployed application 6-24
How to use in a deployed application 6-24

wrapper file 1-5
wrapper function 6-11
wrappers

C shared library 6-12
C++ library 6-12
main 6-11

Index-7

	toc
	Getting Started
	Product Description
	Key Features

	Product Overview
	What is MATLAB Compiler?
	When To Use MATLAB Compiler
	When Not To Use MATLAB Compiler

	How Do I Use This Product?
	How Does This Product Work?
	Standalone Applications and Shared Libraries
	Wrapper Files
	MATLAB Compiler-generated Applications and the MATLAB Compiler R

	Limitations and Restrictions
	Architecture Compatibility
	Cross-Platform Considerations
	Limitations on Deployability

	MATLAB Compiler Prerequisites
	Your Role in the Application Deployment Process
	What You Need to Know
	Products, Compilers, and IDE Installation
	Compiler Selection with mbuild -setup

	Deployment Target Architectures and Compatibility
	Dependency and Non-Compilable Code Considerations
	For More Information

	The Magic Square Example
	About This Example
	What Is a Magic Square?
	How Do I Access the Examples?
	Watch a Video
	For More Information

	Create a Standalone Application From MATLAB Code
	magicsquare Testing
	For More Information

	Creating a Standalone Application
	What Gets Built?

	Packaging (Optional)
	Packaging Wizard

	Running a Standalone or Console Application
	Running a Standalone Application
	Running a Console Application

	Create a Shared Library from MATLAB Code
	magicsquare Testing
	For More Information

	Creating a Shared Library
	What Gets Built?

	Integrate a Shared Library With a C/C++ Application
	Call the C or C++ Application
	Distribute MATLAB Code to End Users
	Gathering Files Necessary for Deployment
	Distribute to End Users
	Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	Install MATLAB Compiler Runtime (MCR)
	MCR Prerequisites
	Add the MCR Installer To Your Deployment Package
	Testing with the MCR
	MCR Path Settings and Installation

	For More Information

	Installation and Configuration
	Before You Install MATLAB Compiler
	Install MATLAB
	Install an ANSI C or C++ Compiler
	Supported ANSI C and C++ Windows Compilers
	Supported ANSI C and C++ UNIX Compilers
	Common Installation Issues and Parameters

	Installing MATLAB Compiler
	Installing Your Product
	Compiler Options

	Configuring the MCR Installer For Invocation From a Network Loca
	Configuring Your Options File with mbuild
	What Is mbuild?
	About mbuild and Linking

	When Not to Use mbuild -setup
	Running mbuild
	Windows
	UNIX

	Locating and Customizing the Options File
	Locating the Options File
	Changing the Options File

	Solving Installation Problems

	MATLAB Code Deployment
	MATLAB Application Deployment Products
	Application Deployment Products and the Deployment Tool
	What Is the Difference Between the Deployment Tool and the mcc C
	How Does MATLAB Compiler Software Build My Application?
	Dependency Analysis Function (depfun)
	MEX-Files, DLLs, or Shared Libraries
	Component Technology File (CTF Archive)
	Additional Details

	Write Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Runtime
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	How the Deployment Products Process MATLAB Function Signatures
	MATLAB Function Signature
	MATLAB Programming Basics
	Creating a Deployable MATLAB Function
	Taking Inputs into a Function

	Load MATLAB Libraries using loadlibrary
	Restrictions on Using MATLAB Function loadlibrary with MATLAB Co

	Use MATLAB Data Files (MAT Files) in Compiled Applications
	Explicitly Including MAT files Using the %#function Pragma
	Load and Save Functions
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap

	MATLAB Objects

	C and C++ Standalone Executable and Shared Library Creation
	Supported Compilation Targets
	When to Create a Standalone Application
	What's the Difference Between a Windows Standalone Application a
	When to Create a Shared Library
	C Shared Libraries
	C++ Shared Libraries

	Standalone Executable and Shared Library Creation From MATLAB Co
	Build Standalone Executables and Shared Libraries Using the Depl
	Build Standalone Executables and Shared Libraries Using the Comm
	Building Standalone Applications and Shared Libraries Using the
	Using the Deployment Tool from the Command Line

	Watch a Video

	Input and Output Files
	Standalone Executable
	C Shared Library
	C++ Shared Library
	Macintosh 64 (Maci64)

	Dependency Analysis Function (depfun) and User Interaction with
	addpath and rmpath in MATLAB
	Passing -I <directory> on the Command Line
	Passing -N and -p <directory> on the Command Line

	Deployment Process
	Overview
	Watch a Video

	Deploying to Developers
	Procedure
	What Software Does a Developer Need?
	Standalone Application
	C or C++ Shared Library
	.NET Component
	COM Component
	Java Component
	COM Component to Use with Microsoft Excel

	Ensuring Memory for Deployed Applications

	Deploying to End Users
	Steps by the Developer to Deploy to End Users
	Steps by the End User
	Using the MCR Installer GUI
	What Software Does the End User Need?
	Standalone Compiled Application That Accesses Shared Library
	.NET Application
	COM Application
	Java Application
	Microsoft Excel Add-in

	Using Relative Paths with Project Files
	Porting Generated Code to a Different Platform
	Extracting a CTF Archive Without Executing the Component
	Ensuring Memory for Deployed Applications

	Working with the MCR
	About the MATLAB Compiler Runtime (MCR)
	How is the MCR Different from MATLAB?
	Performance Considerations and the MCR

	The MCR Installer
	Installing the MCR
	Installing the MCR and MATLAB on the Same Machine
	Installing Multiple MCRs on One Machine

	Installing the MCR Non-Interactively (Silent Mode)
	Customizing a Silent Installation

	Removing (Uninstalling) the MCR
	Windows
	Linux
	Mac

	Retrieving MCR Attributes
	Retrieving Information from MCR State

	Improving Data Access Using the MCR User Data Interface
	MATLAB Functions
	Setting MCR Data for Standalone Executables
	Setting and Retrieving MCR Data for Shared Libraries

	Displaying MCR Initialization Start-Up and Completion Messages F
	Best Practices

	Deploy Applications Created Using Parallel Computing Toolbox
	Compile and Deploy a Standalone Application with the Parallel Co
	Standalone Applications with Profile Passed at Run-Time
	Step 1: Write Your Parallel Computing Toolbox Code
	Step 2: Export Your Profile
	Step 3: Compile and Deploy Your Application
	Standalone Applications with Embedded Profile
	Step 1: Write Your Parallel Computing Toolbox Code
	Step 2: Compile and Deploy Your Application

	Compile and Deploy a Shared Library with the Parallel Computing

	Deploying a Standalone Application on a Network Drive (Windows O
	MATLAB Compiler Deployment Messages
	Using MATLAB Compiler Generated DLLs in Windows Services
	Reserving Memory for Deployed Applications with MATLAB Memory Sh
	What Is MATLAB Memory Shielding and When Should You Use It?
	Requirements for Using MATLAB Memory Shielding
	Invoking MATLAB Memory Shielding for Your Deployed Application
	Using the Command Line
	Using the GUI

	Compiler Commands
	Command Overview
	Compiler Options
	Combining Options
	Conflicting Options on the Command Line
	Using File Extensions
	Interfacing MATLAB Code to C/C++ Code
	Code Proper Return Types From C and C++ Methods

	Simplify Compilation Using Macros
	Macro Options
	Working With Macro Options
	Changing Macro Options
	Specifying Default Macro Options

	Invoke MATLAB Build Options
	Specifying Full Path Names to Build MATLAB Code
	Specifying Full Paths Names

	Using Bundle Files to Build MATLAB Code
	Bundle Files Available with MATLAB Compiler

	What Are Wrapper Files?
	Wrapper Files
	Main File Wrapper
	C Library Wrapper
	C++ Library Wrapper

	MCR Component Cache and CTF Archive Embedding
	Overriding Default Behavior
	For More Information

	Explicitly Including a File for Compilation Using the %#function
	Using feval
	Using %#function

	Use the mxArray API to Work with MATLAB Types
	Script Files
	Converting Script MATLAB Files to Function MATLAB Files
	Including Script Files in Deployed Applications

	Compiler Tips
	Calling a Function from the Command Line
	Using winopen in a Deployed Application
	Using MAT-Files in Deployed Applications
	Compiling a GUI That Contains an ActiveX Control
	Debugging MATLAB Compiler Generated Executables
	Deploying Applications That Call the Java Native Libraries
	Locating .fig Files in Deployed Applications
	Terminating Figures by Force In a Console Application
	Using mclWaitForFiguresToDie with Standalone Applications

	Passing Arguments to and from a Standalone Application
	Passing Arguments to a Double-Clickable Application

	Using Graphical Applications in Shared Library Targets
	Using the VER Function in a Compiled MATLAB Application

	Standalone Applications
	Introduction
	Deploying Standalone Applications
	Compiling the Application
	Testing the Application
	Deploying the Application
	Windows
	UNIX
	Maci64

	Running the Application
	Preparing Your Machines
	Executing the Application

	Working with Standalone Applications and Arguments
	Overview
	Passing File Names, Numbers or Letters, Matrices, and MATLAB Var
	Running Standalone Applications that Use Arguments
	Using SYSTEM, DOS, or UNIX
	Using the ! (bang) Operator
	Using a Windows System
	Using a MATLAB File You Plan to Deploy
	Method 1
	Method 2

	Combining Your MATLAB and C/C++ Code

	Libraries
	Introduction
	Addressing mwArrays Above the 2 GB Limit
	Integrate C Shared Libraries
	C Shared Library Wrapper
	C Shared Library Example
	Building the Shared Library
	Writing a Driver Application for a Shared Library
	Other Details

	Compiling the Driver Application
	Testing the Driver Application
	Creating Shared Libraries from C with mbuild
	Deploying Standalone Applications That Call MATLAB Compiler Base
	Deploying Shared Libraries to Be Used with Other Projects

	Calling a Shared Library
	Initializing and Terminating Your Application with mclInitialize
	Using a Shared Library
	Restrictions When using MATLAB Function loadlibrary

	Using C Shared Libraries On a Mac OS X System

	Integrate C++ Shared Libraries
	C++ Shared Library Wrapper
	C++ Shared Library Example
	Writing the Driver Application
	Other Details

	Compiling the Driver Application
	Incorporating a C++ Shared Library into an Application
	Exported Function Signature
	Error Handling
	Using C/C++ Shared Libraries on a Mac OS X System
	Working with C++ Shared Libraries and Sparse Arrays

	Call MATLAB Compiler API Functions (mcl*) from C/C++ Code
	Functions in the Shared Library
	Type of Application
	For a C Application on Windows
	For a C Application on UNIX
	For a C++ Application on Windows
	For a C++ Application on UNIX

	Structure of Programs That Call Shared Libraries
	Library Initialization and Termination Functions
	Print and Error Handling Functions
	Functions Generated from MATLAB Files
	mlx Interface Function
	mlf Interface Function
	Using varargin and varargout in a MATLAB Function Interface
	 function varargout = foo(varargin)
	function varargout = foo(i1, i2, varargin)
	 function [o1, o2, varargout] = foo(varargin)
	function [o1, o2, varargout] = foo(i1, i2, varargin)

	Retrieving MCR State Information While Using Shared Libraries

	About Memory Management and Cleanup
	Overview
	Passing mxArrays to Shared Libraries

	Troubleshooting
	Introduction
	Common Issues
	Failure Points and Possible Solutions
	How to Use this Section
	Does the Failure Occur During Compilation?
	Is your selected compiler supported by MATLAB Compiler?
	Are error messages produced at compile time?
	Did you compile with the verbose flag?
	Are you compiling within or outside of MATLAB?
	Does a simple read/write application such as “Hello World” compi
	Have you tried to compile any of the examples in MATLAB Compiler
	Does your code compile with the LCC compiler?
	Did the MATLAB code compile successfully before this failure?
	Are you receiving errors when trying to compile a standalone exe
	Are you receiving errors when trying to compile a shared library
	Is your MATLAB object failing to load?
	If you are compiling a driver application, are you using mbuild?
	Are you trying to compile your driver application using Microsof
	Are you importing the correct versions of import libraries?
	Are you able to compile the matrixdriver example?
	Do you get the MATLAB:I18n:InconsistentLocale Warning?
	Does the Failure Occur When Testing Your Application?
	Are you able to execute the application from MATLAB?
	Does the application begin execution and result in MATLAB or oth
	Does the application emit a warning like "MATLAB file may be cor
	Do you have multiple MATLAB versions installed?
	If you are testing a standalone executable or shared library and
	Do you receive an error message about a missing DLL?
	Are you receiving errors when trying to run the shared library a
	Does the Failure Occur When Deploying the Application to End Use
	Is the MCR installed?
	If running on UNIX or Mac, did you update the dynamic library pa
	Do you receive an error message about a missing DLL?
	Do you have write access to the directory the application is ins
	Are you executing a newer version of your application?

	Troubleshooting mbuild
	MATLAB Compiler
	Deployed Applications

	Limitations and Restrictions
	MATLAB Compiler Limitations
	Compiling MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Symptom
	Workaround

	Finding Missing Functions in a MATLAB File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No MATLAB File Help for Compiled Functions
	No MCR Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Comp
	Compiling a Function with WHICH Does Not Search Current Working
	Restrictions on Using C++ SETDATA to Dynamically Resize an MWArr

	Licensing Terms and Restrictions on Compiled Applications
	MATLAB Functions That Cannot Be Compiled

	Reference Information
	MCR Path Settings for Development and Testing
	Overview
	Path for Java Development on All Platforms
	Path Modifications Required for Accessibility
	Windows Settings for Development and Testing
	Linux Settings for Development and Testing
	Mac Settings for Development and Testing

	MCR Path Settings for Run-time Deployment
	General Path Guidelines
	Path for Java Applications on All Platforms
	Windows Path for Run-Time Deployment
	Linux Paths for Run-Time Deployment
	Linux (64-bit)

	Mac Paths for Run-Time Deployment
	Mac

	MATLAB Compiler Licensing
	Using MATLAB Compiler Licenses for Development
	Running MATLAB Compiler in MATLAB Mode
	Running MATLAB Compiler in Standalone Mode

	Application Deployment Terms
	Glossary of Deployment Product Terms

	Functions — Alphabetical List
	Function Reference
	Pragmas
	Command-Line Tools
	API Functions

	MATLAB Compiler Quick Reference
	Common Uses of MATLAB Compiler
	Create a Standalone Application
	Example 1
	Example 2
	Example 3

	Create a Library
	Example 1
	Example 2

	mcc Command Arguments Listed Alphabetically
	mcc Command Line Arguments Grouped by Task

	Using MATLAB Compiler on Mac or Linux
	Overview
	Installing MATLAB Compiler on Mac or Linux
	Installing MATLAB Compiler
	Selecting Your gcc Compiler
	Custom Configuring Your Options File
	Install Apple Xcode from DVD on Maci64

	Writing Applications for Mac or Linux
	Objective-C/C++ Applications for Apple’s Cocoa API
	Where’s the Example Code?
	Preparing Your Apple Xcode Development Environment
	Build and Run the Sierpinski Application
	Running the Sierpinski Application

	Building Your Application on Mac or Linux
	Compiling Your Application with the Deployment Tool
	Compiling Your Application with the Command Line
	On Non-Maci64 Platforms
	On Maci64

	Testing Your Application on Mac or Linux
	Running Your Application on Mac or Linux
	Installing the MCR on Mac or Linux
	Performing a Silent Installation of the MCR on Mac or Linux

	Set MCR Paths on Mac or Linux with Scripts
	Solving Problems Related to Setting MCR Paths on Mac or Linux
	I tried running SETENV on Mac and the command failed
	My Mac application fails with “Library not loaded” or “Image not

	Running Applications on Linux Systems with No Display Console

	Run Your 64-Bit Mac Application
	Overview
	Installing the Macintosh Application Launcher Preference Pane
	Configuring the Installation Area
	Modifying Your Installation Area

	Launching the Application

	Error and Warning Messages
	About Error and Warning Messages
	Compile-Time Errors
	Warning Messages
	depfun Errors
	About depfun Errors
	MCR/Dispatcher Errors
	XML Parser Errors
	depfun-Produced Errors

	C++ Utility Library Reference
	Data Conversion Restrictions for the C++ MWArray API
	Primitive Types
	Utility Classes
	mwString Class
	About mwString
	Constructors
	Methods
	Operators

	mwException Class
	About mwException
	Constructors
	Methods
	Operators

	mwArray Class
	About mwArray
	Constructors
	Methods
	Operators
	Static Methods
	Static Factory Methods for Sparse Arrays

	Index

	tables
	Application Deployment Roles, Tasks, and References
	MATLAB Programmer
	Key Tasks for the MATLAB Programmer
	MATLAB Compiler Supported Compilation Targets for Standalone App
	MATLAB Programmer
	Key Tasks for the MATLAB Programmer
	MATLAB Compiler Supported Compilation Targets
	C/C++ Developer
	Key Tasks for the C or C++ Developer
	Systems Administrator
	Windows Operating System
	UNIX Operating System
	MATLAB Programmer
	MATLAB Suite of Application Deployment Products
	Information on CTF Archive Embedding/Extraction and Component Ca
	MemShieldStarter Options
	-m Macro
	List of Unsupported Functions and Programs
	COM Components
	CTF Archive
	Debugging
	Dependency Function (depfun) Processing
	Licenses
	MATLAB Builder EX
	MATLAB Path
	mbuild
	MATLAB Compiler Runtime (MCR)
	Override Default Inputs
	Override Default Outputs
	Wrappers and Libraries

